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Introduction
This	is	a	book	about	using	data	in	journalism,	but	it’s	not	a	particularly	practical	book.
Instead	it’s	for	the	curious,	for	those	who	wonder	about	the	deep	ideas	that	hold	everything
together.	Some	of	these	ideas	are	very	old,	some	have	emerged	in	just	the	last	few
decades,	and	many	of	them	have	come	together	to	create	the	particularly	twenty-first-
century	practice	of	data	journalism.

We’ll	cover	some	of	the	mathy	parts	of	statistics,	but	also	the	difficulty	of	taking	a	census	of
race	and	the	cognitive	psychology	of	probabilities.	We’ll	trace	where	data	comes	from,	what
journalists	do	with	it,	and	where	it	goes	after—and	try	to	understand	the	possibilities	and
limitations.	Data	journalism	is	as	interdisciplinary	as	it	gets,	which	can	make	it	difficult	to
assemble	all	the	pieces	you	need.	This	is	one	attempt.

There	are	few	equations	and	no	code	in	this	book,	and	I	don’t	assume	you	know	anything
about	math.	But	I	am	assuming	you	want	to	know,	so	I’m	going	to	develop	some	key	ideas
from	the	ground	up.	Or	maybe	you’ve	studied	a	technical	field	and	you	are	just	coming	into
journalism,	in	which	case	I	hope	this	book	helps	you	understand	how	your	skills	apply.	This
is	a	framework,	a	collection	of	big	ideas	journalists	can	steal	from	other	fields.	I	want	to	give
a	foothold	into	statistical	analysis	in	all	its	nerdy	splendor,	but	equally	show	how	ethnography
can	help	you	interpret	crime	figures.

We’re	going	to	look	at	data	a	lot	more	closely	than	you	might	be	used	to.	Consider	this	graph
of	the	U.S.	unemployment	rate	over	the	last	10	years.	There	is	a	whole	world	just	beneath
the	surface	of	this	image.
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From	the	U.S.	Bureau	of	Labor	Statistics.

It’s	clear	that	a	lot	of	people	lost	their	jobs	after	the	2008	financial	crash.	You	can	read	this
chart	and	say	how	many:	The	unemployment	rate	went	up	by	5	percent.	This	is	a	very
ordinary,	very	reasonable	way	of	talking	about	this	data,	exactly	the	sort	of	thing	that	should
pop	into	your	head	when	you	see	this	image.	We’re	going	to	look	deeper.

Where	did	these	numbers	come	from?	What	do	they	actually	count?	What	can	the	journalist
say	about	this	data,	in	light	of	recent	history?	What	should	the	audience	do	after	seeing	it?
Why	do	we	believe	charts	like	this,	and	should	we?	How	is	an	unemployment	chart	any
better,	or	different,	than	just	asking	people	about	their	post-crash	lives?

What’s	the	data	really	doing	for	us	here?

This	book	is	about	bringing	the	quantitative	tradition	into	journalism.	Data	is	not	just
numbers,	but	numbers	were	the	first	form	of	data.	The	very	first	writing	systems	were	used
for	accounting,	long	before	they	were	sophisticated	enough	for	language. 	At	that	time	the
rules	of	addition	must	have	seemed	incredibly	arcane	(in	base	60,	at	first!),	and	it	must	have
been	a	powerful	trick	to	be	able	to	tell	in	advance	how	many	stones	you	would	need	for	a
building	of	a	certain	size.	There	is	no	doubt	that	numbers,	like	words,	are	a	type	of	practical
magic,	and	counting	is	the	foundation	of	data	work	to	this	day.	But	you	already	know	how	to
count.	So	we’re	mostly	going	to	talk	about	ideas	that	were	developed	during	The
Enlightenment,	then	massively	refined	and	expanded	in	the	twentieth	century	with	modern
statistics	and	computers.

1
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We’ll	need	to	go	well	outside	of	statistics	to	make	any	sense	of	things.	I’ve	been	raiding
psychology	and	social	science	and	ethnography,	and	further	places	too	like	intelligence
analysis	and	the	neurobiology	of	vision.	I’ve	been	collecting	pieces,	hoping	to	use	data	more
thoughtfully	and	effectively	in	my	journalism	work.	I’ve	tried	to	organize	the	things	that	can
be	said	into	three	parts:	Quantification	is	what	makes	data,	then	the	journalist	analyzes	it,
then	the	result	is	communicated	to	the	audience.	This	process	creates	“stories,”	the	central
products	of	journalism.

In	journalism,	a	story	is	a	narrative	that	is	not	only	true	but	interesting	and	relevant	to	the
intended	audience.	Data	journalism	is	different	from	pure	statistical	analysis—if	there	is	such
a	thing—because	we	need	culture,	law,	and	politics	to	tell	us	what	data	matters	and	how.	A
procurement	database	may	tell	us	that	the	city	councilor	has	been	handing	out	lucrative
contracts	to	his	brother.	But	this	is	interesting	only	if	we	understand	this	sort	of	thing	as
“corruption”	and	we’ve	decided	to	look	for	it.	A	sports	journalist	might	look	for	entirely
different	stories	in	the	same	data,	such	as	whether	or	not	the	city	is	actually	going	to	build
that	proposed	new	stadium.	The	data	alone	doesn’t	determine	the	story.	But	the	story	still
has	to	be	true,	and	hopefully	also	thorough	and	fair.	What	exactly	that	means	isn’t	always
obvious.	The	relationship	between	story,	data,	culture,	and	truth	is	one	of	the	key	problems
of	twenty-first-century	journalism.

The	process	of	quantification,	analysis,	and	communication	is	a	cycle.	After	communicating
a	result	you	may	realize	that	you	want	a	different	analysis	of	the	same	data,	or	different	data
entirely.	You	might	end	up	repeating	this	process	many	times	before	anything	is	ever
published,	exploring	the	data	and	communicating	primarily	to	yourself	and	your	colleagues
to	find	and	shape	the	story.	Or	these	steps	might	happen	for	each	of	many	stories	in	a	long
series,	with	feedback	from	the	audience	directing	the	course	of	your	reporting.	And
somewhere,	at	some	point,	the	audience	acts	on	what	you	have	communicated.	Otherwise,
journalism	would	have	no	effect	at	all.

Data	begins	with	quantification.	Data	is	not	something	that	exists	in	nature,	and	unemployed
people	are	a	very	different	thing	than	unemployment	data.	What	is	counted	and	how?

There	are	at	least	six	different	ways	that	the	U.S.	government	counts	who	is	unemployed,
which	give	rise	to	data	sets	labeled	U1	to	U6. 	The	official	unemployment	rate—	the
government	calls	one	of	them	“official”—is	known	as	U3.	But	U3	does	not	count	people	who
gave	up	looking	for	a	job,	as	U4	does,	or	people	who	hold	part-time	jobs	because	they	can’t
get	a	full-time	job,	as	U6	does.

And	this	says	nothing	about	how	these	statistics	are	actually	tabulated.	No	one	goes	around
asking	every	single	American	about	their	employment	status	every	single	month.	The	official
numbers	are	not	“raw”	counts	but	must	be	derived	from	other	data	in	a	vast	and
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sophisticated	ongoing	estimation	process	based	on	random	sampling.	Unemployment
figures,	being	estimates,	have	statistical	estimation	error—far	more	error	than	generally
realized.	This	makes	most	stories	about	short-term	increases	or	decreases	irrelevant.

There	is	a	complex	relationship	between	the	idea	conveyed	by	the	words	“unemployment
rate”	and	the	process	that	produces	a	particular	set	of	numbers.	Normally	all	of	this	is
backstage,	hidden	behind	the	chart.	it’s	the	same	for	any	other	data.	Data	is	created.	It	is	a
record,	a	document,	an	artifact,	dripping	with	meaning	and	circumstance.	A	machine
recorded	a	number	at	some	point	on	some	medium,	or	a	particular	human	on	a	particular
day	made	a	judgment	that	some	aspect	of	the	world	was	this	and	not	that,	and	marked	a	0
or	a	1.	Even	before	that,	someone	had	to	decide	that	some	sort	of	information	was	worth
recording,	had	to	conceive	of	the	categories	and	meanings	and	ways	of	measurement,	and
had	to	set	up	the	whole	apparatus	of	data	production.

Data	production	is	an	elaborate	process	involving	humans,	machines,	ideas,	and	reality.	It	is
social,	physical,	and	specific	to	time	and	place.	I’m	going	to	call	this	whole	process
“quantification,”	a	word	which	I’ll	use	to	include	everything	from	dreaming	up	what	should	be
counted	to	wiring	up	sensors.

If	quantification	turns	the	world	into	data,	analysis	tells	us	what	the	data	means.	Here	is
where	journalism	leans	most	heavily	on	traditional	mathematical	statistics.	If	you’ve	found
statistics	difficult	to	learn,	it’s	not	your	fault.	It	has	been	terribly	taught. 	Yet	the	underlying
ideas	are	beautiful	and	sensible.	These	foundational	principles	lead	to	certain	rules	that
guide	our	search	for	truth,	and	we	want	those	rules.	It	is	hard	to	forgive	arithmetic	errors	or	a
reporter’s	confused	causality.	Journalism	can	demand	deep	and	specific	technical
knowledge.	It’s	no	place	for	people	who	want	to	avoid	math.

Suppose	you	want	to	know	if	the	unemployment	rate	is	affected	by,	say,	tax	policy.	You	might
compare	the	unemployment	rates	of	countries	with	different	tax	rates.	The	logic	here	is
sound,	but	a	simple	comparison	is	wrong.	A	great	many	things	can	and	do	affect	the
unemployment	rate,	so	it’s	difficult	to	isolate	just	the	effect	of	taxes.	Even	so,	you	can	build
statistical	models	to	help	you	guess	what	the	unemployment	rate	would	have	been	if	all
factors	other	than	tax	policy	were	the	same	between	countries.	We’re	now	talking	about
imaginary	worlds,	derived	from	the	real	through	force	of	logic.	That’s	a	tricky	thing—not
always	possible,	and	not	always	defensible	even	when	formally	possible.	But	we	do	have
hundreds	of	years	of	guidance	to	help	us.

Journalists	are	not	economists,	of	course.	They’re	not	really	specialists	of	any	kind,
especially	if	journalism	is	all	they	have	studied	and	practiced.	We	already	have	economists,
epidemiologists,	criminologists,	climatologists,	and	on	and	on.	But	journalists	need	to
understand	the	methods	of	any	field	they	touch,	or	they	will	be	unable	to	tell	good	work	from
bad.	They	won’t	know	which	analyses	are	worth	repeating.	Even	worse,	they	will	not
understand	which	data	matters.	And,	increasingly,	journalists	are	attempting	their	own
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analyses	when	they	discover	that	the	knowledge	they	want	does	not	yet	exist.	Journalists
aren’t	scientists,	but	they	need	to	understand	what	science	knows	about	evidence	and
inference.

There	are	few	outright	equations	in	this	book,	but	it	is	a	technical	book.	I	use	standard
statistical	language	and	try	to	describe	concepts	faithfully	but	mostly	skip	the	formal	details.
Whenever	you	see	a	word	in	italics	that	means	you	can	go	look	it	up	elsewhere.	Each
technical	term	is	a	gateway	to	whole	worlds	of	specialized	knowledge.	I	hope	this	book	gives
you	a	high-level	view	of	how	statistical	theory	is	put	together,	so	you’ll	know	what	you’re
trying	to	do	and	where	you	might	look	for	the	appropriate	pieces.

After	analysis	comes	communication.	This	makes	journalism	different	from	scholarship	or
science,	or	any	field	that	produces	knowledge	but	doesn’t	feel	the	compulsion	to	tell	the
public	about	it	in	an	understandable	way.	Journalism	is	for	the	audience—which	is	often	a
very	broad	audience,	potentially	millions	of	people.

Communication	depends	on	human	culture	and	cognition.	A	story	includes	an
unemployment	chart	because	it’s	a	better	way	of	communicating	changes	in	the
unemployment	rate	than	a	table	of	numbers,	which	is	true	because	human	eyes	and	brains
process	visual	information	in	a	certain	way.	Your	visual	system	is	attuned	to	the	orientation
of	lines,	which	allows	you	to	perceive	trends	without	conscious	effort.	This	is	a	remarkable
fact	which	makes	data	visualization	possible!	And	it	shows	that	data	journalists	need	to
understand	quantitative	cognition	if	they	want	to	communicate	effectively.

From	experience	and	experiments	we	know	quite	a	lot	about	how	minds	work	with	data.
Raw	numbers	are	difficult	to	interpret	without	comparisons,	which	leads	to	all	sorts	of
normalization	formulas.	Variation	tends	to	get	collapsed	into	stereotypes,	and	uncertainty
tends	to	be	ignored	as	we	look	for	patterns	and	simplifications.	Risk	is	personal	and
subjective,	but	there	are	sensible	ways	to	compare	and	communicate	odds.

But	more	than	these	technical	concerns	is	the	question	of	what	is	being	said	about	whom.
Journalism	is	supposed	to	reflect	society	back	to	itself,	but	who	is	the	“we”	in	the	data?
Certain	people	are	excluded	from	any	count,	and	astonishing	variation	is	abstracted	into
uniformity.	The	unemployment	rate	reduces	each	voice	to	a	single	bit:	are	you	looking	for
work,	yes/no?	A	vast	social	media	data	set	seems	like	it	ought	to	tell	us	deep	truths	about
society,	but	it	cannot	say	anything	about	the	people	who	don’t	post,	or	the	things	they	don’t
post	about.	Omniscience	sounds	fantastic,	but	data	is	a	map	and	not	the	territory.

And	then	there’s	the	audience.	What	someone	understands	when	they	look	at	the	data
depends	on	what	they	already	believe.	If	you	aren’t	unemployed	yourself,	you	have	to	rely
on	some	image	of	“unemployed	person”	to	bring	meaning	to	the	idea	of	an	unemployment
rate.	That	image	may	be	positive	or	negative,	it	may	be	justified	or	untrue,	but	you	have	to	fill
in	the	idea	of	unemployment	with	something	to	make	any	sense	at	all	of	unemployment
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statistics.	Data	can	demolish	or	reinforce	stereotypes,	so	it’s	important	for	the	journalist	to	be
aware	that	these	stereotypes	are	in	play.	That	is	one	reason	why	it’s	not	enough	for	data	to
be	presented	“accurately.”	We	have	to	ask	what	the	recipient	will	end	up	believing	about	the
world,	and	about	the	people	represented	by	the	data.	Often,	data	is	best	communicated	by
connecting	it	to	stories	from	the	individual	lives	it	represents.

We’re	not	quite	done.	I	want	action.	Someone	eventually	has	to	act	on	what	they’ve	learned
if	journalism	is	going	to	mean	anything	at	all,	and	action	is	a	powerfully	clarifying
perspective.	Knowing	the	unemployment	rate	is	interesting.	Much	better	is	knowing	that	a
specific	plan	would	plausibly	create	jobs.	This	sort	of	deep	research	will	usually	be	done	by
specialists,	but	journalists	have	to	understand	enough	to	act	as	a	communicator	and	an
independent	check.	As	a	media	professional,	a	journalist	has	both	the	power	and
responsibility	to	decide	what	is	worth	repeating.

Data	cannot	tell	us	what	to	do,	but	it	can	sometimes	tell	us	about	consequences.	The
twentieth	century	saw	great	advances	in	our	understanding	of	causality	and	prediction.	But
prediction	is	very	hard.	Most	things	can’t	be	predicted	well,	for	fundamental	reasons	such	as
lack	of	data,	intrinsic	randomness,	free	will,	or	the	butterfly	effect.	These	are	profound	limits
to	what	we	can	know	about	the	future.	Yet	where	prediction	is	possible,	there	is	convincing
evidence	that	data	is	essential.	Purely	qualitative	methods,	no	matter	how	sophisticated,	just
don’t	seem	to	be	as	accurate.	Statistical	methods	are	essential	for	journalism	that	asks	what
will	happen,	what	should	be	done,	or	how	best	to	do	it.

This	doesn’t	mean	we	can	just	run	the	equations	forward	and	read	off	what	to	do.	We’ve
seen	that	dream	before.	At	an	individual	level,	the	ancient	desire	for	universal	quantification
can	be	a	source	of	mathematical	inspiration.	Leibniz	dreamed	of	an	unambiguous	language
of	“universal	character.”	Three	centuries	later,	the	failure	of	the	symbolic	logic	paradigm	in
artificial	intelligence	finally	showed	how	impractical	that	is,	but	the	exercise	was	enormously
productive.	The	desire	for	universal	quantification	hasn’t	worked	out	quite	so	well	at	a
societal	level.	Every	authoritarian	planner	dreams	of	utopia,	but	totalitarian	technocratic
visions	have	been	uniformly	disastrous	for	the	people	living	in	them.	A	fully	quantified	social
order	is	an	insult	to	freedom,	and	there	are	good	reasons	to	suspect	such	systems	will
always	be	defeated	by	their	rigidity. 	Questions	of	action	can	hone	and	refine	data	work,	but
actual	action—making	a	choice	and	doing—requires	practical	knowledge,	wisdom,	and
creativity.	The	use	of	statistics	in	journalism,	like	the	use	of	statistics	in	general,	will	always
involve	artistry.

All	of	this	is	implicit	in	every	use	of	data	in	journalism.	All	of	it	is	just	below	the	surface	of	an
unemployment	chart	in	the	news,	to	say	nothing	of	the	dazzling	visualizations	that	journalists
now	create.	Journalism	depends	on	what	we	have	decided	to	count,	the	techniques	used	to
interpret	those	counts,	how	we	decide	to	show	the	results,	and	what	happens	after	we	do.
And	then	the	world	changes,	and	we	report	again. 
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Quantification
The	mathematical	modeling	tools	we	employ	at	once	extend	and	limit	our	ability	to	conceive
the	world.	-	David	Hestenes

There	were	no	Hispanics	living	in	the	United	States	before	1970.	At	least,	there	weren’t
according	to	the	census.	There	couldn’t	be,	because	the	census	form	did	not	include
“Hispanic”	or	“Latino”	or	anything	like	it.

Actually	there	were	about	nine	million	Hispanics	living	in	the	country	by	1970. 	In	many
ways	the	lack	of	census	data	made	them	invisible.	You	couldn’t	say	with	certainty	where
they	were	living.	It	would	have	been	difficult	to	know	how	the	health,	education,	and	income
of	Hispanic	families	compared	to	other	families,	much	less	contemplate	ways	to	close	the
gaps.	You	wouldn’t	even	know	how	many	people	might	be	affected	if	you	did.

Quantification	is	the	process	that	creates	data.	You	can	only	measure	what	you	can
conceive.	That’s	the	first	challenge	of	quantification.	The	next	challenge	is	actually
measuring	it,	and	knowing	that	you	measured	it	accurately.	Data	is	only	useful	because	it
represents	the	world,	but	that	link	can	be	fragile.	At	some	point,	some	person	or	machine
counted	or	measured	or	categorized,	and	recorded	the	result.	The	whole	process	has	to
work	just	right,	and	our	understanding	of	exactly	how	it	all	works	has	to	be	correct,	or	the
data	won’t	be	meaningful.

Sometimes	this	is	not	a	simple	thing	to	do.	It	seems	clear	enough	how	to	quantify	the
number	of	cars	sold	or	the	amount	of	grain	exported,	where	counting	has	the	feel	of
something	objective	and	definite.	But	journalists	are	interested	in	many	other	things	where
the	proper	relationship	between	the	words,	the	numbers,	and	the	world	is	much	less	clear.

Are	mass	shootings	more	or	less	common	today	than	10	years	ago?	What	fraction	of	the
population	is	Hispanic?	How	many	people	suffer	from	depression?	These	seem	like
questions	that	counting	can	answer,	but	“mass	shootings,”	“Hispanics,”	and	“depression”	are
not	easy	things	to	count.	Who,	precisely,	counts	as	depressed?	And	how	would	you
determine	the	number	of	depressed	people	in	the	entire	country?

Quantification	is	a	problem	without	a	home.	Statisticians	and	computer	scientists	do	not
normally	spend	a	lot	of	time	asking	how	data	came	to	be.	Actually,	their	methods	are
powerful	precisely	because	they	are	abstract.	Physicists	and	engineers	were	the	first	to	think
seriously	about	quantification,	and	they	have	carefully	developed	the	processes	of
measurement	over	many	centuries.	Even	in	such	“hard”	disciplines	there	are	many	choices
that	must	be	made	about	what	gets	measured,	but	these	fields	usually	only	deal	with
quantities	that	can	be	expressed	in	the	units	of	physics.	Econometrics	broadened	the
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horizons,	but	it	is	psychologists	and	social	scientists	who	have	thought	most	deeply	about
the	quantification	of	people	and	societies,	the	sorts	of	quantifications	that	are	often	most
interesting	and	most	vexing	to	a	journalist.

I’m	going	to	try	to	give	the	flavor	of	the	problems	of	quantification	with	two	examples:
recording	someone’s	race	in	a	database	and	estimating	the	monthly	unemployment	rate.
The	first	is	a	parable	about	the	difficulty	of	categories.	The	second	is	a	tour	through	the
beautiful	ideas	of	random	sampling	and	quantified	uncertainty	so	central	to	modern
statistical	work.	But	before	we	can	get	there,	we	have	to	talk	about	what	makes	something
“quantitative”	at	all.

iv
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The	Quantities	of	Everyday	Language
Quantity	is	an	ancient	idea,	so	ancient	that	it	appears	at	the	core	of	every	human	language.
Words	like	“less”	and	“every”	are	obviously	quantitative,	and	lead	to	more	complex	concepts
like	“trend”	and	“significant.”	Quantitative	thinking	starts	with	recognizing	when	you	are
talking	about	quantities.

Spot	the	quantitative	ideas	in	this	sentence	from	the	article	“Anti-Intellectualism	is	Killing
America,”	which	appeared	in	Psychology	Today:

In	a	country	where	a	sitting	congressman	told	a	crowd	that	evolution	and	the	Big	Bang
are	“lies	straight	from	the	pit	of	hell,”	where	the	chairman	of	a	Senate	environmental
panel	brought	a	snowball	into	the	chamber	as	evidence	that	climate	change	is	a	hoax,
where	almost	one	in	three	citizens	can’t	name	the	vice	president,	it	is	beyond	dispute
that	critical	thinking	has	been	abandoned	as	a	cultural	value.

This	is	pure	cultural	critique,	and	we	could	take	it	many	different	ways.	We	could	read	this
sentence	as	a	rant,	a	plea,	an	affirmation,	a	provocation,	a	list	of	examples,	or	any	other
type	of	expression.	Maybe	it’s	art.	But	journalism	is	traditionally	understood	as	“nonfiction,”
so	let’s	take	this	at	face	value	and	ask	whether	it’s	true.

I	see	an	empirical	and	quantitative	claim	at	the	heart	of	the	phrase	“critical	thinking	has	been
abandoned	as	a	cultural	value.”	It’s	empirical	because	it	speaks	about	something	that	is
happening	in	the	world,	something	with	observable	consequences.	It’s	quantitative	because
the	word	“abandoned”	speaks	about	comparing	the	amount	of	something	at	two	different
times.	Something	we	never	had	can’t	be	abandoned.

For	at	least	two	points	in	time	we	need	to	decide	whether	or	not	“critical	thinking	is	a	cultural
value.”	This	is	the	moment	of	quantification.	“Abandoned”	might	have	an	all-or-nothing	flavor,
but	it’s	probably	a	lot	more	reasonable	to	define	shades	of	gray	based	on	the	number	of
people	and	institutions	that	are	embodying	the	value	of	critical	thinking;	or	perhaps	it	makes
sense	to	look	at	how	many	acts	of	critical	thinking	are	occurring.	Of	course	“critical	thinking”
is	not	an	easy	thing	to	pin	down	but	if	we	choose	any	definition	at	all	we	are	literally	deciding
which	things	“count”	as	critical	thinking.	The	next	step	is	to	come	up	with	a	practical	plan	to
count	those	things.	If	we	can’t	or	won’t	count	in	practice,	there’s	no	quantitative	way	to	test
this	claim	against	reality.	It’s	not	that	the	sentence	would	then	mean	nothing,	it’s	just	that	its
meaning	couldn’t	be	evaluated	by	comparing	the	words	with	the	world	in	a	yes/no	kind	of
way.

8

The	Quantities	of	Everyday	Language

14



One	way	or	another,	testing	the	claim	that	“critical	thinking	has	been	abandoned	as	a	cultural
value”	demands	that	we	count	something	at	two	different	points	in	time	and	look	for	a	drop	in
the	number.	There	are	surely	fights	waiting	to	happen	over	what	should	be	counted,	whether
it	was	correctly	counted,	and	the	numerical	threshold	for	“abandoned.”	But	if	you’re	willing	to
make	some	choices,	you	can	go	out	and	find	relevant	facts.	This	is	what	the	author’s	given
us:

a	sitting	congressman	told	a	crowd	that	evolution	and	the	Big	Bang	are	“lies	straight
from	the	pit	of	hell”

the	chairman	of	a	Senate	environmental	panel	brought	a	snowball	into	the	chamber	as
evidence	that	climate	change	is	a	hoax

almost	one	in	three	citizens	can’t	name	the	vice	president

Even	if	these	were	all	good	examples	of	a	failure	of	“critical	thinking,”	they	still	wouldn’t	be
good	evidence	for	the	idea	that	critical	thinking	has	been	abandoned.	The	problem	is	that
the	author	is	trying	to	say	something	about	a	very	large	group	of	people.	These	examples
would	need	to	be	representative.	Are	these	failures	of	critical	thinking	typical	of	the	whole
society?	It	seems	just	as	easy	to	come	up	with	counterexamples.	Yeah,	someone	brought	a
snowball	into	Congress	to	argue	against	climate	change,	but	the	EPA	also	recently	decided
to	start	regulating	carbon	dioxide	as	a	pollutant.	That’s	evidence	against	the
representativeness	of	the	author’s	examples,	but	of	course	you	could	dig	up	a	million	more
examples	on	each	side.	That’s	where	counting	gets	interesting:	it’s	a	systematic	way	to
grasp	the	whole	of	something,	which	can	lead	to	much	stronger	statements.

That’s	the	logic	behind	historian	G.	Kitson	Clark’s	advice	for	making	generalizations:

Do	not	guess;	try	to	count.	And	if	you	cannot	count,	admit	that	you	are	guessing.

The	fact	that	“one	in	three	citizens	can’t	name	the	vice	president”	is	closer	to	the	sort	of
evidence	we	need.	This	statement	generalizes	in	a	way	that	individual	examples	can’t,
because	it	makes	a	claim	about	all	U.S.	citizens.	It	doesn’t	matter	how	many	people	I	can
name	who	know	who	the	vice	president	is,	because	we	know	(by	counting)	that	there	are
100	million	who	cannot.	But	this	still	only	addresses	one	point	in	time.	Were	things	better
before?	Was	there	any	point	in	history	where	more	than	two-thirds	of	the	population	could
name	the	vice-president?	We	don’t	know.

In	short,	the	evidence	in	this	sentence	is	not	the	right	type.	The	word	“abandoned”	has
embedded	quantitative	concepts	that	are	not	being	properly	handled.	We	need	something
tested	or	measured	or	counted	across	the	entire	culture	at	two	different	points	in	time,	and
we	don’t	have	that—none	of	which	makes	this	a	“bad”	piece	of	writing.	It	might	provoke	the
reader	to	think	about	the	value	of	critical	thinking.	It	might	be	emotionally	resonant.	It	might
draw	attention	to	important	examples.	It	might	even	be	persuasive.	Whether	it’s	good	or	not
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depends	on	what	you	want	it	to	do.	But	in	terms	of	empirical	claims	and	the	evidence
provided	for	them,	this	is	a	weak	argument.	It	doesn’t	respect	the	quantitative	structure	of
the	language	it	uses.

Many	words	have	quantitative	aspects.	Words	like	“all,”	“every,”	“none,”	and	“some”	are	so
explicitly	quantitative	that	they’re	called	quantifiers	in	mathematics.	Comparisons	like	“more”
and	“fewer”	are	clearly	about	counting,	but	much	richer	words	like	“better”	and	“worse”	also
imply	counting	or	measuring	at	least	two	things.	There	are	words	that	compare	different
points	in	time,	like	“trend,”	“progress,”	and	“abandoned.”	There	are	words	that	imply
magnitudes	such	as	“few,”	“gargantuan,”	and	“scant.”	A	series	of	Greek	philosophers,	long
before	Christ,	showed	that	the	meanings	of	“if,”	“then,”	“and,”	“or,”	and	“not”	could	be
captured	symbolically	as	propositional	logic.	To	be	sure,	all	of	these	words	have	meanings
and	resonances	far	beyond	the	mathematical.	But	they	lose	their	central	meaning	if	the
quantitative	core	is	ignored.

We’re	really	taking	language	apart	here,	and	no	one	could	make	it	through	a	day	if	they	had
to	fact	check	every	sentence	they	read.	Also,	there	are	other	ways	of	relating	to	a	story.	But
this	is	a	way	of	seeing	that	every	journalist	should	have	in	their	toolbox—and	pass	on	to
readers	when	helpful.	The	relation	between	words	and	numbers	is	of	fundamental
importance	to	the	pursuit	of	truth.	It	tells	you	when	you	should	be	counting	something.
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Counting	Race
In	2004,	the	government	of	Florida	drew	up	a	list	of	felons	who	were	ineligible	to	vote.	It	did
this	by	matching	names	between	a	criminal	records	database	and	a	registered	voter
database.	The	courts	ordered	that	the	list	be	released	publicly,	and	shortly	thereafter	the
Sarasota	Herald-Tribune	discovered	that	there	were	almost	no	Hispanics	on	the	list.

This	seemed	impossible.	Hispanics	made	up	17	percent	of	the	population	but	only	one-tenth
of	1	percent	of	the	list;	there	were	only	61	Hispanic	people	on	the	list	of	47,763	names.	At
the	time,	Florida’s	Hispanic	voters	were	mostly	Cubans	who	supported	the	Republican	Party.
If	they	weren’t	on	the	list,	they	would	be	allowed	to	vote.	There	were	accusations	of
politically	motivated	fraud.

More	digging	revealed	that	this	was	not	actually	a	political	maneuver	but	a	data	problem.	In
the	state’s	voter	database,	Hispanic	is	a	“race.”	In	the	criminal	history	database,	Hispanic	is
an	“ethnicity.”	The	same	information	was	conceived	in	two	different	ways,	so	it	was	recorded
in	two	different	fields	in	two	different	systems.	To	prevent	false	matches	based	on	name
alone,	the	government	had	chosen	to	match	on	name,	date	of	birth,	and	“race”	but	not
“ethnicity.”	Thus,	Hispanic	felons	could	never	match	Hispanic	voters.

Which	database	schema	is	correct?	Is	Hispanic	an	ethnicity	or	a	race?	This	sounds	like	a
cultural,	social,	or	even	philosophical	question,	but	in	this	context	it’s	really	a	question	about
the	process	of	counting.	After	all,	these	databases	are	concrete	objects,	created	by	humans.
At	some	point	there	was	a	decision	that	each	person	was,	or	was	not,	Hispanic,	and	this
value	was	recorded	in	either	the	“race”	or	“ethnicity”	column.

How	do	you	assign	a	racial	category	to	each	person,	or	even	decide	what	those	categories
should	be?	This	is	a	problem	that	the	U.S.	Census	has	solved,	for	better	or	worse,	for	over
200	years.

Article	I,	Section	2	of	the	1787	Constitution	established	the	census	and	divided	people	into
three	categories:	“free	persons”;	“Indians	not	taxed”;	and	“other	persons,”	which	really	meant
“slaves.”	Although	aligned	with	race,	these	were	also	political	categories	because	the
census	was	created	to	apportion	representatives	and	taxes	between	the	states.	Indians
counted	for	neither	representation	nor	taxes,	while	slaves	were	only	counted	as	three-fifths
of	a	person.	This	was	the	compromise	between	the	slave	and	non-slave	states	that	created
the	country.	It	seems	insane	now,	but	that’s	the	history,	and	a	reminder	that	the	census	is	not
an	“objective”	count	but	a	bureaucratic	process	that	generates	data	for	specific	purposes.
Asking	why	the	data	was	collected	does	not	answer	how	it	was	collected,	but	it’s	often	a	big
hint.
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Over	the	next	century	it	became	possible	for	a	person	to	be	counted	in	many	more	different
ways.	The	category	of	“free	colored	person”	appeared	in	1820.	No	one	was	interracial,
according	to	the	data,	until	the	1850	census	added	the	category	of	“mulatto.”	The	1890
census	expanded	into	ethnicity	and	finer	shades	of	black	when	it	asked	“whether	white,
black,	mulatto,	quadroon,	octoroon,	Chinese,	Japanese,	or	Indian.”

Of	course	you	could	see	people	of	all	these	types	on	city	streets	by	then—but	not	in	the
official	statistics	until	these	additions.	Categories	were	being	added	to	better	describe	a
reality	that	could	already	be	perceived	by	other	means.	Which	doesn’t	make	the	categories
reality.	There	were	huge	numbers	of	people	who	didn’t	fit	into	any	of	these	categories,	like
the	Irish,	who	suffered	intense	racism	in	nineteenth-century	America.

But	a	list	of	races	doesn’t	tell	us	how	a	person’s	race	was	actually	determined.	In	practice,	a
census	enumerator	visited	each	home	and	checked	a	box.	For	decades,	enumerators	were
told	to	count	someone	as	black	if	there	was	any	degree	of	black	ancestry,	echoing	the	“one
drop	rule”	of	the	Jim	Crow	era.	Here’s	how	race	was	supposed	to	be	quantified	for	the	1940
census:
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Instructions	for	quantifying	race	and	sex	on	the	1940	census.

It’s	not	clear	how	census-takers	were	supposed	to	determine	someone’s	ancestry	going
back	generations,	or	how	they	applied	this	rule	in	practice,	or	if	they	even	read	the
instructions—meaning	that	we	don’t	know	quite	how	to	interpret	the	racial	categories	of	the
early	twentieth-century	census.	If	the	collection	method	is	obscure,	so	is	the	data.

Then	things	changed.	In	the	mid-twentieth	century	there	was	a	huge	shift	in	the	way	race
was	counted,	but	not	because	of	social	or	philosophical	ideals.	Instead	the	motive	was
statistical	accuracy.

Close	analysis	of	the	1940	census	data	suggested	that	the	results	were	low	by	3.6	percent,
meaning	millions	of	people	had	not	been	counted.	The	census	was	supposed	to	be	a	simple
count,	but	the	massive	undercount	proved	that	counting	was	anything	but	simple.	And	some
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people	were	more	undercounted	than	others:	13	percent	of	non-“white”	people	were	missing
from	the	census	results.

There	was	clearly	a	racial	bias	in	the	census-taking	process.	It	was	soon	discovered	that
census	enumerators	were	having	difficulty	identifying	American	Indians	in	urban	areas
where	they	were	mixed	in	with	majority	white	populations.	This	proved	that	looking	at
someone	didn’t	always	provide	an	accurate	impression	of	their	race.	To	address	this,	the
1960	census	used	a	different	approach:	People	were	simply	asked	what	race	they	were.

If	self-identification	seems	the	obvious	way	to	determine	race,	that’s	because	we	now
understand	race	as	an	entanglement	of	identity,	culture,	and	biology,	as	much	social	as
genetic.	But	that	is	a	late	twentieth-century	understanding.	The	census	officials	of	the	1950s
do	not	seem	to	have	understood	race	this	way;	they	simply	wanted	a	more	accurate	count
and	took	for	granted	that	a	person	knows	their	own	race.

There	is	something	about	self-identification	that	feels	like	a	step	forward	in	codifying	race,	a
better	way	of	making	it	visible	in	the	aggregate.	it’s	a	more	dignified	approach.	But	it	has	its
own	serious	limitations.	it’s	not	the	data	you	need	if	you	want	to	study	race-linked	genetic
diseases	or	how	people	treat	strangers	differently	based	on	skin	color.	We	can	think	of	race
in	many	different	ways,	but	the	available	data	has	no	obligation	to	match	our	conceptions.	If
you	want	to	know	what	the	data	really	measures,	the	only	thing	that	matters	is	how	it	was
collected.	Hence,	the	census	up	to	1950	counts	something	different	than	the	census	from
1960	onward,	even	though	both	call	it	“race.”	How	is	it	different?	That	depends	on	the
question	you	wish	to	ask	of	the	data.

Meanwhile,	Hispanics	had	begun	to	make	up	a	significant	fraction	of	the	U.S.	population,
and	“Hispanic”	finally	appeared	on	census	forms	in	1970.	Before	that	the	census	said
nothing	about	how	many	Hispanic	people	lived	in	the	country,	where	they	lived,	their
incomes,	or	any	of	the	other	variables	now	routinely	collected.

Things	changed	again	in	1977	with	a	new	set	of	federal	government	guidelines	on	the
collection	of	race	data,	the	infamous	“Directive	15”	from	the	Office	of	Management	and
Budget.	This	recommended	dividing	race	into	four	categories:	“American	Indian	or	Alaska
Native,”	“Asian	or	Pacific	Islander,”	“Black,”	and	“White.”	It	also	said	“it	is	preferable	to	collect
data	on	race	and	ethnicity	separately”	and	defined	ethnicity	as	“Hispanic	origin”	or	“not	of
Hispanic	origin.”	The	logic	here	is	that	Hispanics	can	be	any	race,	such	as	Afro-Cubans.
Which	is	great,	except	that	about	a	third	of	all	Hispanic	people	consider	“Hispanic”	to	be	a
race,	or	at	least	they	check	“other	race”	on	their	census	forms	and	write	in	“Hispanic”	or
“Mexican”	or	“Latina.”

This	is	how	Florida’s	criminal	history	database	came	to	code	Hispanics	differently	than
Florida’s	voter	registration	database.	The	database	of	felons	coded	race	according	to	federal
standards,	so	race	could	only	be	white,	black,	Asian,	American	Indian,	or	unknown.	Hispanic
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was	coded	as	an	ethnicity,	in	a	different	field.	Meanwhile,	the	voter	registration	database
coded	Hispanic	as	a	race.	A	simple	comparison	on	the	“race”	field	failed,	because	race	is	not
a	simple	thing	to	quantify.

If	the	federal	racial	categorization	system	feels	a	bit	arbitrary,	that’s	because	it	is.	Even	its
creators	knew	not	to	take	it	too	seriously,	writing,	“These	classifications	should	not	be
interpreted	as	being	scientific	or	anthropological	in	nature.” 	Nonetheless,	all	of	the	federal
government’s	race	data	includes	these	four	master	categories	to	this	day.	But	many
agencies	also	collect	more	detailed	information	on	racial	sub-categories.	The	census	has
long	included	a	growing	list	of	Asian	races,	and	you’ve	been	able	to	write	in	any	race	you
want	since	1910.

The	last	major	change	to	the	race	questions	on	the	census	came	in	2000.	Now	you’re
allowed	to	check	multiple	races	on	the	census	form,	in	addition	to	several	possible	choices
for	Hispanic	ethnicity.	The	2010	form	looked	like	this:
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On	the	2010	census,	2.9	percent	of	the	population	identified	as	two	or	more	races.	This	is
nine	million	people	who	are	expressing	a	type	of	racial	identity	which	was	invisible	before	we
decided	to	count	it.
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The	Problem	of	What	to	Count
Quantification	always	involves	complex	choices,	even	in	the	hard	sciences.	Although	friction
is	a	basic	force	of	classical	physics,	it	comes	from	micro-interactions	between	surfaces	that
aren’t	fully	understood.	A	high	school	physics	textbook	will	tell	you	that	we	usually	describe	it
with	two	numbers:	the	coefficient	of	static	friction	which	is	how	hard	you	have	to	push	to	start
sliding,	and	the	coefficient	of	kinetic	friction	which	is	how	hard	you	have	to	push	to	keep
sliding.	But	more	sophisticated	measurements	show	that	friction	is	actually	quite	a	complex
force.	It	also	depends	on	velocity,	and	even	on	how	fast	you	were	sliding	previously.
Anyone	working	with	friction	has	to	choose	how	to	quantify	it.

Race	is	even	more	difficult	to	quantify,	as	are	a	great	many	things	of	social	interest.	it’s
terribly	easy	to	forget	this	complexity	when	you	are	looking	at	neat	rows	and	columns	of
data.

A	few	years	ago	I	worked	on	a	story	about	gun	violence.	At	the	time	there	was	a	lot	of
popular	discussion	about	“mass	shooting”	incidents,	and	whether	they	were	or	weren’t	on
the	rise.	But	what’s	a	“mass	shooting”?	It	seems	like	a	single	murder	doesn’t	count,	so	how
many	people	must	be	killed	at	once	before	it’s	“mass”?	You	have	to	answer	this	question
before	you	can	answer	the	question	of	whether	such	incidents	are	more	or	less	common
than	before.	I	eventually	chose	four	people	as	the	minimum	threshold	for	a	mass	shooting,
because	that’s	what	the	data	I	had	used.	The	creators	of	that	data	chose	four	because	this	is
how	the	FBI	counts	“mass	murders,”	even	though	those	aren’t	quite	the	same	thing	as
“mass	shootings.”	Responding	to	the	interest	in	these	events,	the	FBI	later	released	its	own
data	set	of	“active	shooter”	incidents,	which	it	defined	as	“individuals	actively	engaged	in
killing	or	attempting	to	kill	people	in	populated	areas	(excluding	shootings	related	to	gang	or
drug	violence).”

This	is	all	somewhat	arbitrary,	and	there	is	no	“right”	answer	here.	What	you	should	count
depends	on	what	you	care	about,	that	is,	it	depends	on	the	story	you	are	attempting	to	tell.
And	after	looking	at	the	data	you	may	realize	that	you	want	to	count	something	else.	Your
initial	story	may	turn	out	to	be	uninteresting,	unfair,	or	just	plain	wrong.

It	gets	even	trickier.	Imagine	tracking	the	prevalence	of	mental	health	issues	such	as
“depression”	or	“borderline	personality	disorder,”	which	are	short	names	for	evolving	ideas
about	diseases.	The	complex	diagnostic	criteria	for	these	conditions,	which	used	to	be
printed	in	thick	handbooks,	define	a	quantification	process.	Or	think	of	the	police	officer	who
must	record	if	a	particular	incident	is	“sexual	harassment”	or	not.	it’s	easy	to	imagine	that	not
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every	officer	will	have	the	same	idea	of	what	sexual	harassment	means.	This	can	make	the
data	maddeningly	hard	to	interpret,	not	to	mention	unfair.	Small	differences	in	counting
technique	can	and	do	become	the	focus	of	intense	arguments.

Still	we	find	some	way	to	count.	A	quantification	process	formalizes	the	act	of	counting	or
measuring	or	categorizing	and	attempts	to	apply	it	consistently	across	many	situations.
That’s	the	whole	point	of	standard	units	like	meters	and	kilograms.	But	alas,	many	vital
things	do	not	have	standard	measures.	How	do	we	quantify	more	abstract	concepts	such	as
“educational	attainment”	or	“quality	of	life”	or	“intelligence”?

In	practice	we	end	up	replacing	such	rich	concepts	with	much	simpler	proxies.	We	get	“test
scores”	instead	of	“educational	attainment”	and	“income”	as	a	proxy	for	“quality	of	life,”	while
“intelligence”	is	today	measured	by	a	battery	of	tests	which	assess	many	different	cognitive
skills.	In	experimental	science	this	is	called	operationalizing	a	variable,	a	fancy	name	for
picking	a	definition	that’s	both	analytically	useful	and	practical	enough	to	create	data.

If	you	want	to	ask	a	question	that	only	quantitative	methods	can	answer,	you	have	little
choice	but	to	make	this	switch	from	rich	conception	to	repeatable	measurement.	But
quantification	can	also	force	you	to	be	clear.	Trying	to	quantify	might	lead	you	to	discover
that	you’ve	been	using	certain	words	for	a	long	time	without	really	understanding	what	they
mean—do	you	really	know	what	“intelligence”	is?	Eventually	a	quantification	of	a	thing	can
become	the	definition,	as	the	IQ	test	did.	This	might	be	a	clarifying	improvement,	or	a
narrowing	of	perception,	or	both.	In	any	case,	it	is	a	choice	that	should	be	made	consciously.

Usually	there	is	some	end	goal,	some	purpose	to	collecting	data,	and	you	can	ask	whether
any	particular	quantification	method	serves	that	purpose.	And	you	can	ask	about	the	end
purpose,	too,	the	frame	of	the	entire	thing.	Different	quantification	methods	serve	different
stories.
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Sampling	and	Quantified	Error
You	should	be	skeptical	of	any	headline	that	says	the	number	of	jobs	in	the	United	States
has	changed	by	fewer	than	about	105,000	since	last	month.	That’s	because	the	monthly
jobs	growth	estimate	has	a	margin	of	error	of	about	plus	or	minus	105,000.

The	New	York	Times	made	this	point	with	an	interactive	graphic,	showing	how	the
uncertainty	in	employment	figures	can	badly	mislead	us.

From	The	New	York	Times,	2014.

Here,	job	growth	was	consistent	at	150,000	new	jobs	each	month,	but	the	released	figures
show	an	upward	trend	just	by	chance.	The	unemployment	rate	calculated	by	the	Bureau	of
Labor	Statistics	includes	a	fair	amount	of	error	due	to	random	sampling,	up	to	105,000	jobs
above	or	below	the	real	value.	Pressing	“play”	animates	the	right	hand	chart	through	endless
possible	scenarios	with	the	same	range	of	error.	If	you	wait	for	a	minute	you	can	see	cases
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where	job	growth	appears	to	have	any	trend	you	like.	Because	of	these	random	errors,
monthly	changes	typically	mean	less	than	we	think	they	do.	Long-term	trends	are	much
more	reliable.

Political	polls	also	have	built-in	error.	If	one	candidate	is	ahead	of	the	other	47	percent	to	45
percent,	but	the	margin	of	error	is	5	percent,	there	is	a	pretty	good	chance	that	another
identical	poll	will	show	the	candidates	the	other	way	around.	Pretty	much	any	sort	of	public
survey	will	have	intrinsic	error,	and	a	reputable	source	will	report	the	margin	of	error	along
with	the	results.	The	error	of	a	measurement	is	a	necessary	part	of	understanding	what	that
measurement	means.

Maybe	you’ve	seen	formulas	for	calculating	the	margin	of	error	for	a	random	sample,	but
rather	than	repeat	those	equations	I	want	to	give	a	sense	of	why	we	use	random	sampling	at
all	and	how	it	leads	to	quantified	error.	Expressing	how	much	error	there	is	may	seem
obvious	now,	but	it	was	a	key	innovation	in	the	history	of	statistics.	There	is	a	random
sample	in	the	Old	Testament:	“The	people	cast	lots	to	bring	one	out	of	every	ten	of	them	to
live	in	Jerusalem.” 	It	couldn't	have	been	long	before	someone	thought	of	counting	by
letting	each	of	the	chosen	stand	for	10,	but	millennia	passed	before	anyone	was	able	to
estimate	the	accuracy	of	this	process.

Sampling	is	basically	a	labor-saving	device.	The	unemployment	figures	need	to	come	out
every	month,	but	nobody	is	going	to	knock	on	your	door	12	times	a	year	to	ask	if	you	have	a
job.	Instead	the	unemployment	rate	is	calculated	from	the	answers	to	two	surveys:	the
Current	Establishment	Survey	which	samples	businesses,	and	the	Current	Population
Survey	which	samples	households. 	150,000	randomly	chosen	people	each	month,
each	of	whom	is	eventually	assigned	to	one	of	three	categories:	“employed,”	“unemployed,”
or	“not	in	the	labor	force.” 	The	fraction	of	“unemployed”	people	among	those	asked	then
stands	in	for	the	fraction	of	unemployed	people	in	the	whole	country.

If	this	doesn’t	strike	you	as	audacious,	you’ve	probably	never	thought	about	just	what	a	poll
claims	to	be	able	to	do.	Extrapolating	from	150,000	people	to	300,000,000	people	means
collecting	information	from	one	person	in	2,000	then	saying	it	speaks	for	the	other	1,999.	It’s
like	asking	only	one	person	in	each	neighborhood	whether	he	or	she	is	employed.

Randomness	is	the	key	to	this,	because	it	makes	over-representation	by	any	one	group
extremely	unlikely.	It’s	possible	that	all	the	people	who	answer	a	random	telephone	poll
might	be	unemployed	just	by	chance,	giving	us	a	bad	estimate.	But	that	will	happen	rarely—
essentially	never	in	practice—and	how	else	should	we	pick	people?	We	could	count	through
consecutive	phone	numbers	instead,	but	that	might	only	get	us	answers	from	a	certain	area.
Or	we	could	just	go	through	our	own	contact	lists,	but	that	seems	even	less	representative.
Randomness	is	not	subject	to	selection	bias	precisely	because	it	has	no	relation	to	anything
else.	Even	better,	although	any	given	sample	will	give	us	an	estimate	that	is	off	by	some
amount,	the	most	common	value	is	going	to	be	the	true	value.	Also,	it’s	randomness	that
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allows	us	to	reason	about	what	the	error	is.	Instead	of	reasoning	about	the	error	of	a	single
survey,	which	is	unknowable,	we	can	reason	about	the	error	of	the	sampling	process	across
many	different	surveys.	This	is	akin	to	saying	that	we	can’t	know	what	the	next	roll	of	the	die
will	be,	but	there	is	a	one-sixth	chance	it	will	be	a	five.

Let’s	make	the	problem	a	little	simpler	and	imagine	that	there	are	only	50	people	in	the
whole	country,	and	you’ve	computed	the	unemployment	rate	by	sampling	five	of	them.	You
could	have	ended	up	with	many	different	sets	of	five	people	in	your	sample	had	chance
taken	a	different	course,	but	there	are	a	finite	number	of	possibilities.	Here	are	some	of
them,	and	the	different	unemployment	rate	estimates	that	each	one	would	give	you:

You	can	imagine	drawing	a	picture	of	every	possible	set	of	names	out	of	50.	You’ll	end	up

with	“50	choose	5”	different	sampling	patterns,	a	number	which	is	usually	written	 	.
You	can	get	an	actual	number	for	this	using	the	“choose”	or	“combinations”	function	of	a
scientific	calculator	or	programming	language,	and	it’s	2,118,760,	over	two	million.	There	are
an	awful	lot	of	ways	to	pick	five	random	things	out	of	50	possible	things,	and	a	hugely	larger
number	of	ways	to	pick	150,000	people	out	of	300,0000,000,	but	we	can	count	with	simple
formulas	either	way.
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We	can	group	all	of	these	sampling	patterns	into	six	piles,	according	to	how	many	people	in
each	sample	turned	up	unemployed,	zero	to	five.	This	groups	our	answers	into
unemployment	rates	of	0/5,	1/5,	2/5,	3/5,	4/5,	and	5/5,	which	is	the	same	as	0%,	20%,	40%,
60%,	80%,	and	100%	unemployment.	Because	each	possible	sample—each	set	of	five
names—is	equally	likely,	the	size	of	each	pile	tells	you	your	chances	of	getting	a	final
estimate	with	that	number	of	unemployed	people.	This	is	the	key	insight	that	will	allow	us	to
quantify	how	often	we	expect	our	unemployment	estimate	to	be	wrong,	and	by	how	much.

You	don’t	actually	need	stacks	of	drawings	to	calculate	the	error	of	an	unemployment
estimate,	because	we	can	directly	calculate	the	number	of	samples	of	each	kind.	For
example,	we	can	work	out	how	many	samples	include	exactly	one	unemployed	person.	Here
there	are	50	people,	20	of	whom	are	unemployed.	The	total	number	of	ways	to	choose	five
people	from	50	so	that	exactly	one	turns	up	unemployed	is	equal	to	the	number	of	ways	to
pick	one	unemployed	person	from	20,	times	the	number	of	ways	to	pick	four	unemployed
people	out	of	30.

This	is	written	 	using	the	standard	notation	for	“choose.”	Some	readers	will
recognize	a	similar 	term	in	the	binomial	distribution	function	B(50,0.4),	the	formula
developed	by	Bernoulli	some	time	in	the	1680s.

This	formula	makes	it	possible	to	tally	the	number	of	ways	to	get	a	sample	with	any
particular	number	of	unemployed	people.	Dividing	the	number	of	possible	samples	for	each
level	of	unemployment	by	the	total	of	2,118,760	possible	samples	gives	the	probability	of
seeing	each	possible	unemployment	estimate.

Estimated	Unemployment No.	Samples Probability	of	Getting	This	Answer

0% 142,506 0.07

20% 548,100 0.26

40% 771,400 0.36

60% 495,900 0.23

80% 145,350 0.07

100% 15,504 0.01

To	make	this	easier	to	see	we	can	plot	the	figures	like	so:
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This	chart	shows	a	sampling	distribution,	meaning	that	we	would	expect	to	see	each	answer
in	these	proportions	if	we	repeated	the	random	sampling	process	many	times.	As	we	had
hoped,	answers	closer	to	the	truth	occur	more	often	than	those	further	away,	and	the	most
common	answer	is	the	correct	one.	There’s	a	probability	of	0.36,	or	a	36	percent	chance,
that	we’ll	end	up	with	exactly	the	right	answer	from	our	little	survey.

This	distribution	tells	us	everything	we	can	know	about	the	possible	error	in	our	sample
value.	But	we’ll	often	want	a	more	understandable	summary,	and	one	way	of	summarizing
an	error	distribution	is	to	say	how	often	we’ll	get	within	a	certain	distance	of	the	correct
answer.	Let’s	say	we	want	to	know	how	often	we	can	expect	to	get	either	the	true	answer	of
40%,	or	the	closest	incorrect	answers	of	20%	and	60%.	This	requires	adding	up	the
probabilities	that	we	get	20%,	40%,	or	60%,	which	corresponds	to	seeing	one,	two,	or	three
unemployed	people	our	sample.	There’s	a	probability	of	0.26	+	0.36	+	0.23	=	0.85	that	we’ll
see	any	of	these	three	answers.

Among	the	2,118,760	different	samples	of	five	that	we	could	draw	from	our	population	of	50
people,	we	find	that	1,815,400	or	85	percent	of	them	contain	one,	two,	or	three	unemployed
people.	Put	another	way,	85	percent	of	all	samples	contain	between	20%	and	60%
unemployed. 	is	known	as	an	85-percent	confidence	interval.	Because	this	interval	covers	a
40%	range,	and	our	best	estimate	is	right	in	the	middle,	we	say	that	the	estimate	has	a
margin	of	error	of	20%.	The	margin	of	error	is	always	half	of	the	width	of	the	confidence
interval.
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We	need	one	more	step.	So	far	we’ve	been	talking	about	the	possible	samples	we	might	get
for	a	given	true	unemployment	rate	of	40%,	and	how	often	we’ll	end	up	with	each	estimated
number.	In	reality	we	never	get	to	know	the	true	unemployment	rate!	We	only	ever	get	one
sample,	and	this	gives	us	only	a	single	error-prone	estimate.	Instead	of	“how	often	is	the
estimate	within	the	margin	of	error	of	the	true	value,”	the	question	we	really	need	to	ask	is
“how	often	will	the	true	value	be	within	the	margin	of	error	of	the	estimate?”

To	do	this,	we	start	with	the	estimated	unemployment	rate,	that	is,	the	rate	of	unemployment
in	the	actual	sample	we	have.	We	assume	that	this	is	the	true	rate	and	construct	a	margin	of
error	using	the	process	above.	If	the	estimate	is	within	20%	of	the	true	value,	then	it	follows
that	the	true	value	is	within	20%	of	the	estimate.	This	isn’t	perfectly	accurate,	because	the
margin	of	error	varies	in	width	depending	on	the	true	value,	so	our	estimated	margin	of	error
won’t	be	quite	right	if	the	estimate	isn’t	quite	right.	You	can	work	out	more	precise	formulas,
but	this	simple	method	of	substituting	the	estimate	for	the	true	value	gives	a	close
approximation	for	practical	survey	sizes,	and	it’s	widely	used	in	practice.

And	that’s	it.	We’ve	now	calculated	the	margin	of	error	on	our	unemployment	estimate.
There	many	different	ways	of	phrasing	our	result,	which	all	mean	the	same	thing.

The	85-percent	confidence	interval	is	20%	to	60%

The	answer	is	40%	with	a	margin	of	error	of	20%,	17	times	out	of	20.

We	are	85	percent	certain	that	the	true	answer	is	between	20%	and	60%
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The	answer	is	40%	±	20%	at	85	percent	confidence.

Notice	that	we	always	use	two	values	to	measure	the	uncertainty:	a	margin	of	error	and
the	probability	that	the	true	answer	falls	within	that	margin	of	error. 	of	error,	in	this	case
20%	to	60%,	is	called	the	85-percent	confidence	interval.	The	85	percent	figure	itself	is
called	the	confidence	level.	Whatever	language	we	use,	we	have	quantified	the	error	in
our	survey	in	two	values:	a	range	of	error	and	how	often	you’ll	see	that	something	within
that	range.

If	40%	±	20%	at	an	85-percent	confidence	level	is	a	precise	enough	answer,	you’ve
reduced	your	work	by	a	factor	of	10	by	asking	only	five	out	of	50	people.	If	it’s	not
precise	enough,	you	can	sample	more	people.	To	compare	the	error	distributions	of
different	numbers	of	samples,	it	helps	to	hold	the	confidence	level	constant.	The	Bureau
of	Labor	Statistics	reports	the	margin	of	error	on	unemployment	figures	at	the	90-
percent	level,	so	we	will	too.	We’ll	also	do	the	calculations	as	if	we’re	sampling	from	a
real	country’s	population,	which	is	much	larger	than	50.

The	accuracy	gets	better	as	you	ask	more	people.	As	the	number	of	samples	gets	larger—
we’re	up	to	100	in	the	last	picture	above—the	margin	of	error	gets	narrower	(for	a	particular
confidence	level)	and	the	distribution	of	possible	answers	rapidly	approaches	the	classic
bell-shaped	curve,	the	normal	distribution.	Even	better,	for	large	samples	the	error	caused
by	sampling	depends	primarily	the	sample	size,	not	the	population	size.	This	means	that
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estimating	the	opinions	of	a	hundred	million	people	takes	barely	more	work	than	estimating
the	opinions	of	one	million.	By	the	time	you	survey	1,000	people,	the	margin	of	error	is	down
to	3%	at	the	90-percent	confidence	level.

This	is	how	we	know	the	error	in	our	monthly	unemployment	estimates.	The	Current
Population	Survey	samples	150,000	people	out	of	300,000,000.	The	Bureau	of	Labor
statistics	has	run	the	math	and	worked	out	that	it’ll	get	within	300,000	of	the	true
unemployment	rate	90	percent	of	the	time,	which	corresponds	to	0.2%	difference	in	the
national	unemployment	rate. 	The	300,000	is	the	margin	of	error	and	the	90	percent	is	the
confidence	level.

If	a	90-percent	confidence	interval	sounds	like	a	10	percent	chance	of	disaster,	we	can	trade
off	between	the	estimated	error	and	the	risk	of	falling	outside	of	that	error:	it’s	equally	true	to
say	that	99	percent	of	the	time	the	unemployment	figures	will	be	accurate	to	within	±	0.3%.
This	is	the	same	thing,	reported	differently;	we’re	just	widening	the	red	line	on	the	above
charts	until	it	covers	99	percent	of	the	possible	outcomes.

There	is	an	intricate	bargain	being	struck	here.	In	exchange	for	a	little	fuzziness	(the	margin
of	error)	and	a	little	risk	(the	confidence	level)	we’ve	reduced	our	work	to	calculate	the
unemployment	rate	by	2,000	times.	This	remains	astonishing	to	me.	it’s	beautiful	and	non-
obvious	and	took	millennia	for	humanity	to	see	it.
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The	Problem	of	Measurement	Error
In	practice,	nothing	can	be	measured	perfectly.

A	random	sample	has	a	margin	of	error	due	to	sampling,	but	every	quantification	has	error
for	one	reason	or	another.	The	length	of	a	table	cannot	be	measured	much	finer	than	the	tick
marks	on	whatever	ruler	you	use,	and	the	ruler	itself	was	created	with	finite	precision.	Every
physical	sensor	has	noise,	limited	resolution,	calibration	problems,	and	other	unaccounted
variations.	Humans	are	never	completely	consistent	in	their	categorizations,	and	the	world	is
filled	with	special	cases.	And	I’ve	never	seen	a	database	that	didn’t	have	a	certain	fraction	of
corrupted	or	missing	or	simply	nonsensical	entries,	the	result	of	glitches	in	increasingly
complex	data-generation	workflows.

Error	creeps	in,	and	the	data	never	quite	matches	the	description	on	the	box.	Anyone	who
works	with	data	has	had	this	beaten	into	them	by	experience.

Even	simple	counts	break	down	when	you	have	to	count	a	lot	of	things.	We’ve	all	sensed
that	large	population	figures	are	somewhat	fictitious.	Are	there	really	536,348	people	in	your
hometown,	as	the	number	on	the	“Welcome	To	…”	sign	suggests?	If	the	sign	said	540,000,
we	would	know	to	treat	it	as	a	rough	figure,	yet	far	too	often	we’re	willing	to	imagine	that
every	last	digit	is	accurate.

There	are	analogous	difficulties	with	counting	the	number	of	people	at	a	protest,	the	number
of	intravenous	drug	users	in	a	city,	or	the	number	of	stars	in	the	galaxy.	Even	counting	the
number	of	distinct	names	in	a	large	database	can	require	complex	estimation	algorithms,
given	the	constraints	of	distributed	storage	and	finite	memory. 	Large	counts	are	usually
estimates,	which	differ	from	the	true	value	by	some	amount.

But	we	gain	hugely	if	we	can	say	something	about	the	accuracy	of	our	data.	Our	answer	to
“how	long	is	the	table?”	might	be	“52	inches,	to	the	nearest	eighth	of	an	inch.”

Reliable	data	includes	measures	of	error:	how	much	the	reported	information	is	expected	to
differ	from	the	reality	it	represents.	There	are	many	standard	ways	to	report	the	accuracy	of
different	kinds	of	data.	Figures	might	be	“accurate	to	the	nearest	quarter	pound”	or	use	more
technical	notation	like	±	and	ideas	like	“standard	error”	and	“confidence	interval.”	For	a	large
database	you	could	report	or	estimate	the	number	of	bad	entries.	The	modern	census	has	a
second	wave	to	estimate	coverage	and	therefore	error.	In	many	fields	it’s	considered	shoddy
work	to	report	a	figure	without	giving	some	idea	of	the	accuracy.	Maybe	we	should	say	the
same	for	journalism.
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The	idea	of	measurement	error	is	the	idea	of	quantified	uncertainty.	This	is	one	of	the
tremendous	achievements	of	modern	thought—the	recognition	that	knowing	how	much	we
don’t	know	has	great	value.	Not	all	data	comes	with	measurement	errors	attached.
Sometimes	you	have	to	read	the	fine	print	to	find	out,	or	call	someone	and	ask.	But	if	you	do
not	know	and	cannot	reasonably	guess	the	sources	and	magnitudes	of	possible	error,	then
you	don’t	really	know	what	the	data	means.
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Quantification	Is	Representation
The	world	is	very	rich	and	complex.	Doesn’t	trying	to	reduce	it	to	data	lose	something	vital?
Of	course!

All	quantification	throws	out	information.	It	has	to.	That’s	the	point	of	abstraction:	to	strip
away	enough	detail	that	it’s	possible	to	use	powerful	general-purpose	reasoning	tools.	Most
things	are	thrown	out	when	you	go	from	three	actual	apples	to	“three	apples”	recorded	in	a
database.	We	don’t	know	anything	about	the	color	and	size	of	the	apples,	or	why	they	are
there,	and	maybe	one	of	them	is	half	rotten.	If	we	choose	“apple”	as	our	sole	unit	of	symbolic
representation,	we	will	be	blind	to	everything	else.

But	in	journalism	we	throw	out	information	all	the	time	when	we	select	whom	we	talk	to,	what
we	include	and	exclude	in	our	story,	and	what	we	choose	to	write	about	at	all.	Quantification
represents	the	world	through	the	systematic	creation	of	data,	a	limited	but	powerful	way	to
gather	and	summarize	information.

Fortunately,	quantification	is	neither	mysterious	nor	fixed	by	nature.	Quantification	is	always
a	designed	process.	If	there	is	some	reasonable	way	to	quantify	what	we	care	about,	a
marvelous	universe	of	analysis,	representation,	and	prediction	techniques	open	up	to	us.

Counting	is	limited,	but	there	are	many	things	that	are	best	known	by	counting.
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Analysis
It	may	well	be	that	several	explanations	remain,	in	which	case	one	tries	test	after	test	until
one	or	other	of	them	has	a	convincing	amount	of	support.	-	Sherlock	Holmes

It’s	been	said	that	data	speaks	for	itself.	This	is	nonsense.

It’s	true	that	going	and	looking	usually	beats	sitting	and	thinking.	That’s	the	core	idea	of
empiricism	and	the	point	of	collecting	data.	And	it’s	true	that	data	can	be	revealing	and
insightful.	Sometimes	you	look	at	a	graph	and	say	“aha!”	and	feel	you	understand	the	world
a	little	better.	In	that	moment	there	is	the	sensation	that	the	data	is	speaking,	that	it	tells	a
clear	story.

But	the	data	didn’t	tell	a	story,	you	did.	You	saw	a	story	that	connects	the	data	to	the	world.
Are	you	right?	Ideally,	your	story	is	thoughtfully	corroborated	by	many	sources.	But	if	you’re
going	to	use	data	as	evidence,	you	have	to	understand	what	it	does	and	doesn’t	say.

This	chapter	is	about	how	to	draw	true	meanings	from	true	data.	There	are	mathematical
rules	which	say	that	two	plus	two	never	equals	five.	There	are	formulas	that	encapsulate	the
logic	of	working	with	chance	and	cause.	There	are	basic	principles	of	investigation,	such	as
testing	your	guesses.	And	there	are	fundamental	limitations	to	knowledge,	the	cases	where
we	must	admit	we	can’t	know	the	answer,	at	least	not	with	the	data	we	have.

This	doesn’t	mean	there’s	a	single	right	answer	in	every	case.	All	data	analysis	is	really	data
interpretation,	and	relies	on	combining	data	with	something	else,	such	as	previously	known
facts	or	cultural	knowledge.	Data,	on	its	own,	has	no	meaning	at	all.	Imagine	a	spreadsheet
with	no	column	names.	It	would	just	be	numbers,	indecipherable	and	useless.
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The	necessary	context	enters	in	many	different	ways.	Data	can’t	be	understood	without
knowledge	of	the	quantification	process	that	created	it.	Statistical	work	usually	requires
assumptions	tied	to	common	knowledge:	total	kale	consumption	can’t	be	more	than	a	small
fraction	of	total	food	consumption,	and	lower	cancer	rates	are	better.	But	the	culture	and	the
journalist	are	also	part	of	the	context	that	creates	meaning.	Every	society	has	particular
worries	that	shape	what	is	newsworthy,	while	individual	journalists	have	specific	beats	and
interests.	Actually	the	context	comes	before	the	data;	it	tells	us	what	data	is	relevant,	even
what	questions	are	relevant.

Context	is	where	subjectivity	enters	into	data	interpretation.	The	New	York	Times	illustrated
this	with	two	different	interpretations	of	the	same	unemployment	data,	describing	how	a
Democrat	and	a	Republican	might	see	things.
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How	Democrats	and	Republicans	might	interpret	the	same	unemployment	data	in	different
ways.

But	it’s	not	just	politicians	who	have	different	perspectives.	Journalists	can	and	do	disagree
on	the	interpretation	of	a	single	number.

Headlines	on	October	22,	2013.

Both	headlines	are	perfectly	true.	The	difference	between	them	is	down	to	whether	148,000
merits	“only”—is	it	a	big	or	a	small	number?	This	could	also	be	a	matter	of	expectations:
perhaps	The	Wall	Street	Journal	was	hoping	to	see	a	larger	increase	in	jobs.
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This	subjectivity	may	seem	disheartening.	In	the	sciences	“subjective”	is	sometimes	used	as
an	insult.	Subjective	things	are	personal,	dependent	on	who	is	speaking,	maybe	a	matter	of
taste.	Wasn’t	data	supposed	to	be	objective?	Wasn’t	it	supposed	to	avoid	the	arbitrariness	of
opinion	and	bring	us	closer	to	the	truth?

Data	interpretation	may	not	be	mathematical	logic,	but	nether	is	it	nihilist.	Our	interpretations
must	be	faithful	to	reality.	Out	there	in	the	world	a	policy	changed	crime	rates,	or	it	didn’t.
The	wage	gap	is	some	specific	level	and	no	other.	Careful	measurements	show	climate
change	is	driven	by	human	activity	through	particular	mechanisms,	or	they	don’t.	All	of	these
are	quantitative	statements	that	involve	quantification	choices—sometimes	controversial
choices.	But	once	you	pick	a	counting	method,	reality	will	see	that	you	end	up	with	a
particular	number,	which	is	of	course	the	point	of	counting.	Just	like	a	scientist,	a	journalist
can’t	make	up	data,	ignore	evidence,	or	condone	logical	fallacies.	it’s	equally	important	to
know	when	you	don’t	know,	when	you	can’t	answer	the	question	from	available	data.

Yet	the	constraints	of	truth	leave	a	very	wide	space	for	interpretation.	There	are	many	stories
you	could	write	from	the	same	set	of	facts,	or	you	could	decide	that	entirely	different	facts
are	relevant.	Subjectivity	is	at	the	core	of	journalism,	because	there	is	no	objective	theory
that	tells	us	which	true	stories	are	the	best.	But	“subjective”	doesn’t	necessarily	mean
“personal.”	Culture	is	widely	shared	and	people	live	in	networks,	and	journalism	requires	a
broad	dose	of	societal	knowledge.	Journalists	especially	need	to	understand	the	common
knowledge	and	values	of	the	audience—even	if	just	to	challenge	them.	That	audience	is
never	uniform,	and	different	people	will	have	different	concerns,	experiences,	and
perspectives.	Every	time	you	ask	yourself	“what	is	the	story	here?”	you	are	bringing	the
audience	into	your	work.

Finding	a	story	in	the	data	will	always	be	an	act	of	cultural	creation.	But	those	stories	must
still	be	true!	So	the	rest	of	this	chapter	is	an	introduction	to	three	big	ideas	that	can	help
draw	truth	from	data.	The	first	is	the	effect	of	chance,	randomness,	or	noise,	which	can
obscure	the	real	relation	between	variables	or	create	the	appearance	of	a	connection	where
none	exists.	The	second	is	the	nature	of	cause,	and	the	situations	where	we	can	and	can’t
ascribe	cause	from	the	data.	Above	all	is	the	idea	of	considering	multiple	explanations	for
the	same	data,	rather	than	just	accepting	the	first	explanation	that	makes	sense.

My	goal	is	to	give	you	the	higher-level	logic	of	the	whole	process	of	statistical	analysis.	For
any	particular	problem	you	will	need	specific	technical	tools,	but	those	choices	must	be
guided	by	a	larger	framework.
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Did	the	Policy	Work?
In	2008	the	Australian	city	of	New	South	Wales	had	had	enough	of	drunken	assaults.	The
courts	imposed	an	earlier	closing	time	on	bars	in	the	central	business	district:	No	alcohol
after	3	a.m.	Now,	18	months	later,	you	have	been	asked	to	write	a	story	about	whether	or	not
this	policy	change	worked.	Here’s	the	data:

Number	of	nighttime	assaults	recorded	by	police	in	each	quarter	in	the	central	business	district	(CBD)	of	New	South	Wales,
where	closing	time	was	restricted	to	3	a.m.	Adapted	from	Kypri,	Jones,	McElduff	and	Barker,	2010.

Our	very	first	questions	have	to	be	about	the	source	of	the	data,	the	quantification	process.
Who	recorded	this	and	how?	Of	course	the	police	knew	that	there	was	a	new	closing	time
being	tested—did	this	influence	them	to	count	differently?	Even	a	true	reduction	in	assaults
doesn’t	necessarily	mean	this	is	a	good	policy.	Maybe	there	was	another	way	to	reduce
violence	without	cutting	the	evening	short,	or	maybe	there	was	a	way	to	reduce	violence
much	more.

The	first	step	in	data	analysis	is	seeing	the	frame:	the	assumptions	about	how	the	data	was
collected	and	what	it	means.

But	let’s	assume	all	of	those	questions	have	been	asked,	and	we’re	down	to	the	question	of
whether	the	policy	caused	a	drop	in	assaults.	In	principle,	there	is	a	correct	answer.	Out
there,	in	the	world,	the	earlier	closing	time	had	some	effect	on	the	number	of	nighttime
assaults,	something	between	“nothing	at	all”	to	perhaps	“reduced	by	half.”	Our	task	is	to
estimate	this	effect	quantitatively	as	precisely	as	possible	(and	no	more	precisely	than	that).
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This	data	is	about	as	clear	as	you’re	ever	likely	to	see	outside	of	a	textbook.	We	have	about
seven	years	of	quarterly	data	for	the	number	of	nighttime	assaults	in	the	central	district
before	the	new	closing	time	went	into	effect,	and	18	months	of	data	after.	After	the	policy
change	the	average	number	of	incidents	is	a	lot	lower,	a	drop	from	something	like	100-ish
per	quarter	to	60-ish	per	quarter.

So	the	policy	seems	to	have	worked.	But	let’s	spell	out	the	logic	of	what	we’re	saying	here.	If
you	can’t	express	the	core	of	your	analysis	in	plain,	non-technical	language,	you	probably
don’t	understand	what	you’re	doing.	Our	argument	is:

1.	 The	range	of	the	number	of	incidents	decreased	in	early	2008.

2.	 The	earlier	closing	time	went	into	effect	around	the	same	time.

3.	 Therefore,	the	earlier	closing	time	caused	the	number	of	incidents	to	decrease.

Are	we	right?	There’s	no	necessary	reason	that	the	drop	in	assaults	was	caused	by	the
earlier	closing	time.	The	evidence	we	have	is	circumstantial,	and	any	other	story	we	could
make	up	to	explain	the	data	might	turn	out	to	be	true.	That’s	the	core	message	of	this
chapter,	and	the	key	skill	in	being	right:	Consider	other	explanations.

There	are	common	alternative	explanations	that	are	always	worth	considering.

First,	chance.	Sheer	luck	could	be	fooling	us.	The	actual	number	of	assaults	per	quarter	is
shaped	by	circumstantial	factors	that	we	can’t	hope	to	know.	Who	can	say	why	someone
threw	a	punch,	or	didn’t?	And	we	have	only	six	data	points	from	after	the	new	policy	went
into	effect—could	we	just	be	seeing	a	lucky	roll	of	the	die?

Second,	correlation.	The	decrease	could	be	related	to	the	earlier	closing	time	without	being
caused	by	it.	Perhaps	the	police	stepped	up	patrols	to	enforce	the	new	law,	and	it’s	this
increased	presence	that	is	reducing	crime,	not	the	new	closing	time	itself.

Third,	everything	else.	The	change	could	be	caused	by	something	that	has	never	occurred
to	us.	Maybe	there	was	a	change	in	some	other	sort	of	policy	that	has	a	large	effect	on
nightlife.	Maybe	crime	was	falling	all	over	the	country	at	the	same	time.

We’ll	tackle	these	one	at	a	time.	To	get	there,	we	need	to	tour	through	some	of	the	most
fundamental	and	profound	ideas	of	statistical	analysis.
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Accounting	for	Chance
It’s	very	tempting	to	interpret	something	as	meaningful	when	it	could	just	as	easily	be	a
coincidence—especially	if	it	makes	a	good	story.	But	dumb	luck	is	always	in	the	running	as
an	explanation	for	your	data.	To	try	to	untangle	chance	from	other	factors,	we	can	estimate
the	probability	of	sheer	coincidence.

Our	nighttime	assaults	data	shows	generous	variation.	Before	the	change	in	closing	hours
the	number	of	assaults	ranged	from	60-ish	to	130-ish.	We	say	this	variation	is	random,
meaning	that	we	can’t	ever	hope	to	know	the	circumstances	that	cause	a	particular	fight	on
a	particular	night,	and	it	is	precisely	this	randomness	that	complicates	our	analysis. 	The
less	data	you	have,	the	more	chance	is	a	factor	and	the	easier	it	is	to	be	fooled.	Suppose	we
only	had	two	quarters	of	data	after	the	change:

Number	of	nighttime	assaults,	with	only	two	data	points	after	closing	time	was	restricted	to	3	a.m.	Adapted	from	Kypri	et
al.

If	you	looked	at	just	this	data,	you	might	conclude	that	the	new	closing	time	had	no	effect.
The	new	points	are	pretty	much	in	line	with	the	data	from	the	previous	four	quarters.	If
anything,	it	looks	like	there	was	a	downward	shift	in	the	number	of	assaults	a	year	before	the
policy	ever	went	into	effect!	But	having	seen	the	additional	data,	we	know	that	the	two	points
here	are	at	the	high	end	of	a	new	lower	range.	it’s	just	chance	that	makes	this	truncated	data
look	like	nothing	happened.
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If	we	can	be	fooled	by	two	chance	data	points,	can	we	be	fooled	by	six?	Certainly,	but	less
probably.	How	much	less?

It	takes	a	while	to	build	up	an	intuition	about	the	effects	of	chance.	From	working	with	data
and	models,	you	eventually	get	a	sense	of	what	randomness	looks	like,	and	therefore	what	it
doesn’t	look	like	and	how	much	data	you	need	to	feel	sure	about	your	conclusions.	it’s	well
worth	getting	this	sense	in	your	bones.	But	the	great	advantage	of	statistical	theory	is	the
ability	to	quantify	chance.	“What	are	the	odds	that	it’s	just	a	coincidence?”	is	not	a	rhetorical
question.	It	asks	for	a	numeric	answer.
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Counting	Possible	Worlds
You	probably	use	words	like	“odds,”	“chance,”	“frequency,”	and	“probability”	all	the	time	to
refer	to	uncertain	events.	But	before	we	can	go	any	further	we	need	to	get	precise	about
what	these	words	mean.	You	have	to	get	the	basics	right	or	smart	people	in	your	audience
will	make	fun	of	you,	and	besides	you	won’t	be	able	to	calculate	anything	correctly.

These	simple	ideas	are	no	less	profound	for	being	old	and	really	only	emerged	in	the	late
1600s. 	Even	if	you’ve	been	through	this	before,	perhaps	I	can	offer	a	new	perspective.
Statistics	counts	possible	worlds.

Probability	is	a	way	of	reasoning	about	events	that	we	can’t	observe.	Maybe	we	can’t	see
what’s	happening	because	of	practical	problems:	what’s	the	temperature	at	the	center	of	the
sun?	But	quite	commonly,	we	will	use	probability	to	talk	about	potential	worlds:	what	would
happen	if	we	choose	this	policy? 	The	central	insight	of	probability	is	that	in	many	of	these
situations	you	know	more	than	nothing.

Perhaps	you	don’t	don’t	know	what	the	next	roll	of	the	die	will	be,	but	you	do	know	that	all
possibilities	will	occur	in	equal	proportions.	Or	you	might	know	that	your	friend	usually	orders
a	blueberry	cheesecake	at	your	weekly	dinner	date,	and	less	commonly	the	lemon	tart.	You
can	use	numbers	to	express	these	ideas.	A	probability	of	0	means	“impossible”	while	a
probability	of	1	means	“certain,”	and	all	probabilities	have	to	add	up	1.

Probabilities	are	like	a	percentage	in	that	they	are	proportions,	not	counts,	and	when
someone	says	“percentage	chance”	they	usually	mean	probability	times	100.	But	it’s	often
more	intuitive	to	think	about	probabilities	as	frequencies,	actual	counts	of	different	outcomes.
Suppose	that	over	the	next	five	dinners	with	your	friend	you	would	expect	her	to	order	two
blueberry	cheesecakes	and	three	lemon	tarts.	This	hasn’t	actually	happened	yet	so	we’re
not	counting	actual	deserts,	but	rather	the	deserts	we	expect;	probability	is	a	language	for
talking	about	our	uncertainty.

The	counts	here	are	frequencies.	Probabilities	are	just	the	ratio	of	one	type	of	event	to	all
events.
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The	probability	that	something	happens	is	usually	written	p(something).	In	this	case	p(cake)
=	0.4,	but	like	a	variable	in	an	equation,	you	may	or	may	not	know	the	value	of	your
p(something).	It	may	stand	in	for	a	number	that	someone	has	previously	measured	or
computed,	or	it	may	be	what	you’re	trying	to	work	out.

The	odds	are	a	slightly	different	way	of	talking	about	the	same	proportion.

The	odds	are	defined	as	the	number	of	events	we	are	counting	divided	by	the	number	we
are	not	counting.	In	gambling	the	odds	are	the	number	of	times	you	win	divided	by	the
number	of	times	you	don’t.	The	odds	of	cake	here	are	2/3	or	0.66,	but	we	usually	report
odds	by	giving	the	numerator	and	the	denominator	separately:	the	odds	are	2	to	3.	You	can
convert	odds	to	probability	by	dividing	the	first	number	by	the	sum	of	the	two:	2	to	3	odds	is
a	probability	of	2	/	(2+3).	Odds	of	1	to	1	mean	a	probability	of	1	/	(1+1)	=	1/2,	or	a	50/50
chance.

Although	“odds”	and	“probability”	are	both	numeric	measurements	of	chance,	they	are
different	formulas	and	if	you	confuse	them	you	will	get	the	wrong	answer.	Don’t	be	that
journalist.	(You’re	also	welcome	to	correct	people	when	they	use	the	wrong	words,	but
remember:	pedants	die	alone.)

We	can	do	some	nifty	things	with	simple	probabilities.	How	many	cakes	do	you	expect	your
friend	to	order	over	the	next	20	dinners?	This	is	just	p(cake)	×	20	=	0.4	×	20	=	8.	You	can
think	of	0.4	as	the	average	number	of	cakes	she	orders	per	dinner.	Of	course	there	is
randomness	here;	she	actually	orders	either	zero	or	one	cakes	each	time,	and	over	the
course	of	20	dinners	she	might	order	7	or	9	or	17	cakes,	but	8	will	be	the	most	common
number.	(Because	there	are	two	possible	desert	choices,	you	get	a	binomial	distribution	just
like	the	sampling	distribution	from	the	last	chapter.)
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Quite	often	we	will	need	to	count	how	frequently	multiple	events	occur	together.	What	is	the
probability	that	your	friend	orders	cheesecake	at	the	next	two	dinners?	Let’s	draw	every
possible	combination	of	her	first	and	second	desert	orders.

For	her	first	dinner	she	orders	cake	2	out	of	5	times.	After	each	of	those,	she	orders	cake
again	2	out	of	5	times.	Hence	there	are	2	×	2	=	4	possible	worlds	where	you	get	two	cake
orders	in	a	row.	Since	there	are	25	possibilities	in	total,	the	probability	is	4/25	or	0.16.

Or,	we	could	just	multiply	p(cake)	×	p(cake)	=	0.4	×	0.4	=	0.16.	The	definition	of	probability
divides	out	the	total	number	of	cases	so	that	probabilities	are	always	between	0	and	1,
which	lets	us	avoid	the	tedious	bookkeeping	of	counting	cases	directly	when	all	we	want	is
the	final	proportion.	Multiplication	is	how	you	work	out	the	probability	that	event	A	and	event
B	both	happen	when	the	events	in	question	are	independent,	that	is,	one	doesn’t	affect	the
other.	Whether	or	not	this	is	true	is	a	question	your	data	cannot	answer.	A	coin	doesn’t	care
if	it	came	up	heads	or	tails	last	time,	but	maybe	your	friend	will	get	tired	of	too	many	cakes	in
a	row.

We	can	apply	the	multiplication	rule	to	our	assaults	data.	Suppose	we	can	work	out	the
probability	that	we’ll	see	a	quarter	with	80	or	fewer	assaults	just	by	chance,	even	if	the
earlier	closing	time	did	nothing.	Call	this	p(low).	Then	the	probability	that	we’ll	see	two	low
quarters	in	a	row	is	p(low)	×	p(low),	the	probability	of	seeing	three	low	quarters	in	a	row	is
p(low)	×	p(low)	×	p(low),	and	so	on.

In	practice	you	don’t	work	out	probabilities	by	drawing	trees,	just	as	you	don’t	work	out	the
margin	of	error	by	drawing	pictures	of	samples.	Still,	I	love	thinking	in	terms	of	trees	of
possibilities	because	it	makes	plain	what	we	are	doing	with	probability	arithmetic.	Each
branch	is	a	possible	course	through	history,	and	we	are	assigning	probabilities	by	counting
the	branches	of	different	types.	All	of	statistics	is	based	on	the	idea	of	counting	possibilities.
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Arguing	From	the	Odds
We	can	use	the	logic	of	counting	cases	to	work	out	the	probability	of	an	unlikely	event
happening	by	chance.	In	the	winter	of	1976	the	United	States	embarked	on	a	nationwide	flu
vaccination	program,	responding	to	fears	of	an	H1N1	virus	epidemic	(a.k.a.	swine	flu).
Millions	of	people	lined	up	across	the	country	to	get	vaccinated.	But	some	of	them	got	sick
after,	or	even	died.	The	New	York	Times	wrote	an	editorial:

It	is	disconcerting	that	three	elderly	people	in	one	clinic	in	Pittsburgh,	all	vaccinated
within	the	same	hour,	should	die	within	a	few	hours	thereafter.	This	tragedy	could	occur
by	chance,	but	the	fact	remains	that	it	is	extremely	improbable	that	such	a	group	of
deaths	should	take	place	in	such	a	peculiar	cluster	by	pure	coincidence.

But	is	it	really	“extremely	improbable?”	Nate	Silver	has	estimated	the	odds:

Although	this	logic	is	superficially	persuasive,	it	suffers	from	a	common	statistical
fallacy.	The	fallacy	is	that,	although	the	odds	of	three	particular	elderly	people	dying	on
the	same	particular	day	after	having	been	vaccinated	at	the	same	particular	clinic	are
surely	fairly	long,	the	odds	that	some	group	of	three	elderly	people	would	die	at	some
clinic	on	some	day	are	much	shorter.	>	>	Assuming	that	about	40	percent	of	elderly
Americans	were	vaccinated	within	the	first	11	days	of	the	program,	then	about	9	million
people	aged	65	and	older	would	have	received	the	vaccine	in	early	October	1976.
Assuming	that	there	were	5,000	clinics	nationwide,	this	would	have	been	164
vaccinations	per	clinic	per	day.	A	person	aged	65	or	older	has	about	a	1-in-7,000
chance	of	dying	on	any	particular	day;	>	the	odds	of	at	least	three	such	people	dying	on
the	same	day	from	among	a	group	of	164	patients	are	indeed	very	long,	about	480,000
to	one	against.	However,	under	our	assumptions,	there	were	55,000	opportunities	for
this	“extremely	improbable”	event	to	occur—5,000	clinics,	multiplied	by	11	days.	The
odds	of	this	coincidence	occurring	somewhere	in	America,	therefore,	were	much
shorter—only	about	8	to	1	against.

This	is	a	mouthful.	It	doesn’t	help	that	Silver	is	switching	between	probabilities	(“a	1-in-7000
chance”)	and	odds	(“480,000	to	one”).	But	it’s	just	a	bunch	of	probability	arithmetic.	The	only
part	that	isn’t	simple	multiplication	is	“the	odds	of	at	least	three	such	people	dying.”	In
practice	your	calculator	will	have	some	command	to	solve	these	sorts	of	counting	problems.
The	more	fundamental	insight	is	that	you	can	multiply	the	probability	of	three	people	dying
on	the	same	day	in	the	same	city	by	the	number	of	opportunities	where	it	could	happen	to
work	out	how	often	it	should	happen.
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To	be	sure,	this	can	only	be	a	rough	estimate;	there	is	a	big	pile	of	assumptions	here,	such
as	the	assumption	that	death	rates	don’t	vary	by	place	and	time.	But	the	point	of	this
exercise	is	not	to	nail	down	the	decimals.	We’re	asking	whether	or	not	we	should	believe
that	chance	is	a	good	explanation	for	seeing	three	post-vaccination	deaths	in	one	day,	and
we	only	need	an	order-of-magnitude	estimate	for	that.	Rough	estimates	can	be	incredibly
useful	for	checking	your	story,	and	there’s	a	trove	of	practical	lore	devoted	to	them.

The	odds	“8	to	1	against”	is	a	probability	of	1/9,	or	an	11	percent	chance	that	we’d	see	three
people	from	the	same	clinic	die	on	the	same	day.	Is	this	particularly	long	odds?	This
question	is	hard	to	answer	on	its	own.

The	less	likely	it	is	that	something	can	occur	by	chance,	the	more	likely	it	is	that	something
other	than	chance	is	the	right	explanation.	This	sensible	statement	is	no	less	profound	when
you	think	it	through.	This	idea	emerged	in	the	1600s	when	the	first	modern	statisticians
asked	questions	about	games	of	chance.	If	you	flip	a	coin	10	times	and	get	10	heads,	does
that	mean	the	coin	is	rigged	or	are	you	just	lucky?	The	less	likely	it	is	to	get	10	heads	in	a
row	from	a	fair	coin,	the	more	likely	the	coin	is	a	fake.	This	principle	remains	fundamental	to
the	disentangling	of	cause	and	chance.

Coins	and	cards	are	inherently	mathematical.	Random	deaths	are	a	sort	of	lottery,	where
you	can	multiply	together	the	probabilities	of	the	parts.	It	can	be	a	little	harder	to	see	how	to
calculate	the	probabilities	in	more	complex	cases.	The	key	is	to	find	some	way	of	quantifying
the	randomness	in	the	problem.	One	of	the	earliest	and	most	famous	examples	of
accounting	for	chance	in	a	sophisticated	way	concerns	a	fake	signature,	millions	of	dollars,
and	a	vicious	feud	of	the	American	aristocracy.

In	1865,	Sylvia	Ann	Howland	of	Massachusetts	died	and	left	behind	a	2,025,000-dollar
estate—that	would	be	about	50	million	dollars	today.	But	the	will	was	disputed,	there	was	a
lawsuit,	and	the	plaintiff	argued	that	the	signature	was	traced	from	another	document.	To
support	this	argument,	the	mathematician	Benjamin	Peirce	was	hired	to	prove	that	the
original	signature	could	not	match	the	disputed	signature	so	closely	purely	by	chance.	The
signatures	looked	like	this:
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A	known	genuine	and	two	possibly	forged	signatures	in	the	Howland	will	case.	From	Meier	and	Zabell,	1980.

To	work	out	the	probability	of	these	two	signatures	matching	by	chance,	Peirce	first	worked
out	how	often	a	single	stroke	would	match	between	two	authentic	signatures.	He	collected
42	signatures	from	other	documents,	all	of	them	thought	to	be	genuine.	Then	he	instructed
his	son,	Charles	Sanders	Peirce,	to	superimpose	each	of	the	861	possible	pairs	of	these	42
signatures	and	count	how	many	of	the	30	downward-moving	strokes	aligned	in	position	and
length.	Charles	found	that	the	same	stroke	in	two	different	signatures	matched	only	one-fifth
of	the	time.	This	is	the	key	step	of	quantifying	random	variation,	which	Peirce	did	by	counting
the	coincidences	between	signatures	produced	in	the	wild.

But	every	stroke	of	every	letter	matched	exactly	between	the	original	and	disputed
signatures.	The	elder	Peirce	wanted	to	show	just	how	unlikely	it	was	that	this	could	happen
by	chance,	so	he	assumed	that	every	stroke	was	made	independently	which	allowed	him	to
use	the	multiplication	rule	for	probabilities.	Since	there	are	30	strokes	in	the	signature	and	a
1/5	chance	of	any	single	stroke	matching,	he	argued	that	the	positions	of	the	strokes	of	two
genuine	signatures	should	match	by	chance	only	once	in	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×
5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	×	5	times,	that	is,
once	in	5 .	This	is	a	fantastically	small	number,	a	0.0000000000000000001	percent
chance	of	a	random	match.	According	to	this	calculation,	if	you	signed	your	name	like	Mrs.
Howland	and	did	it	a	billion	times	you	would	never	see	the	same	signature	twice;	one	in	a
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billion	would	be	a	much	healthier	0.0000001	percent	chance.	A	modern	analysis	which	does
not	assume	independence	of	each	stroke	gives	a	probability	several	orders	of	magnitude
more	likely,	but	still	extraordinarily	unlikely.

It	seemed	much	more	likely	that	the	signature	was	forged	by	Hetty	Robinson,	Sylvia	Ann
Howland’s	niece	who	was	contesting	the	will.	Robinson	had	access	to	the	original
documents	and	stood	to	gain	millions	of	dollars	by	tracing	Mrs.	Howland’s	signature	on	an
extra	page	spelling	out	favorable	revisions.

I	admit	I’m	disappointed	that	the	case	was	ultimately	decided	on	other	grounds,	rendering
this	analytical	gem	legally	irrelevant.	But	the	event	was	a	milestone	in	the	practical	use	of
statistics.	Statistics	was	mostly	applied	to	physics	and	gambling	at	that	time,	never	anything
as	qualitative	as	a	signature.	The	trick	here	was	to	find	a	useful	way	of	quantifying	the
variations	from	case	to	case.	Charles	Sanders	Peirce	went	on	to	become	one	of	the	most
famous	nineteenth-century	scientists	and	philosophers,	contributing	to	the	invention	of	the
randomized	controlled	experiment	and	the	philosophical	approach	known	as	pragmatism.

The	probability	that	you	would	see	data	like	yours	purely	by	chance	is	known	as	the	p-value
in	statistics,	and	there	is	a	popular	theory	of	statistical	testing	based	on	it.	First,	you	need	to
choose	a	test	that	defines	whether	some	data	is	“like	yours.”	Peirce	said	a	pair	of	signatures
is	“like”	the	two	signatures	on	the	will	if	all	30	strokes	match.	Then	imagine	producing
endless	random	data,	like	scribbling	out	countless	signature,	or	monkeys	banging	on
typewriters.	Peirce	couldn’t	get	the	deceased	Howland	to	write	out	new	pairs	of	signatures,
so	he	compared	all	combinations	of	all	existing	known	genuine	signatures.	The	p-value
counts	how	often	this	random	data	passes	the	test	of	looking	like	your	data—the	data	you
suspect	is	not	random.

There’s	a	convention	of	saying	that	your	data	is	statistically	significant	if	p	<	0.05,	that	is,	if
there	is	a	5	percent	probability	(or	less)	that	you’d	see	data	like	yours	purely	by	chance.
Scientists	have	used	this	5	percent	chance	of	seeing	your	data	randomly	as	the	minimum
reasonable	threshold	to	argue	that	a	particular	coincidence	is	unlikely	to	be	luck,	but	they
much	prefer	a	1	percent	or	0.1	percent	threshold	for	the	stronger	argument	it	makes. 	But
be	warned:	No	mathematical	procedure	can	turn	uncertainty	into	truth!	We	can	only	find
different	ways	of	talking	about	the	strength	of	the	evidence.	The	right	threshold	to	declare
something	“significant”	depends	on	how	you	feel	about	the	relative	risks	of	false	negatives
and	false	positives	for	your	particular	case,	but	the	5	percent	false	positive	threshold	is	a
standard	definition	that	helps	people	communicate	the	results	of	their	analyses.

Let’s	use	this	p	<	0.05	standard	to	help	us	evaluate	whether	the	1976	flu	vaccine	was
dangerous.	By	this	convention,	an	11	percent	chance	of	seeing	three	people	randomly	die
on	the	same	day	is	evidence	against	a	problem	with	the	vaccine;	you	could	say	the
occurrence	of	these	deaths	is	not	statistically	significant.	That	is,	because	there	is	a	greater
than	5	percent	chance	that	we’d	see	data	like	ours	(three	people	dying)	even	if	the	vaccine
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is	fine,	it’s	not	a	good	bet	to	assume	that	these	deaths	were	caused	by	a	toxic	vaccine.	But
this	does	not	mean	there	is	an	11	percent	chance	that	the	vaccine	is	safe.	We	haven’t	yet
said	anything	at	all	about	the	vaccine;	so	far	we’ve	only	talked	about	the	odds	of	natural
death.

Really	the	question	we	need	to	ask	is	comparative:	Is	it	more	likely	that	the	vaccine	is
harmful,	or	that	the	three	deaths	were	just	a	fluke?	And	how	much	more	likely?	Is	there
greater	or	less	than	an	11	percent	chance	the	vaccine	is	toxic	and	no	one	noticed	during
earlier	testing?	In	the	case	of	the	Howland	will,	we	found	miniscule	odds	that	two	signatures
could	end	up	identical	by	accident.	But	what	are	the	odds	that	Mrs.	Howland’s	niece	forged
the	will?	A	more	complete	theory	of	statistics	tests	multiple	alternatives.
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Statistical	Inference
There	is	a	completely	general	method	of	accounting	for	chance	which	forms	the	basis	of
modern	statistical	reasoning.	Inference	is	the	process	of	combining	existing	knowledge	to
get	new	conclusions,	something	we	do	every	day.	Statistical	inference	adds	the	element	of
uncertainty,	where	both	our	information	and	our	conclusions	have	an	element	of	chance.

The	propositional	logic	of	the	Greeks	gave	us	a	template	for	reasoning	when	every	variable
is	exactly	true	or	false:	“If	it	rains,	the	grass	will	get	wet.	The	grass	is	not	wet.	Therefore	it	did
not	rain	today.”	The	theory	of	statistical	inference	extends	this	to	uncertain	information	and
uncertain	answers:	“There	was	a	40	percent	chance	of	rain	today.	It’s	hard	to	say	from	just
looking	out	my	window,	but	I’m	70	percent	sure	the	grass	is	dry.	What’s	the	probability	that	it
rained	today?”

The	most	comprehensive	modern	theory	is	usually	called	Bayesian	statistics	after	its	roots	in
Reverend	Bayes’s	theorem	of	1763.	But	the	practical	method	was	only	fully	developed	in	the
twentieth	century	with	the	advent	of	modern	computing.	If	you’ve	never	seen	this	sort	of
thing	before,	it’s	unlikely	that	this	little	introduction	will	prepare	you	to	do	your	own	analyses.
We	can’t	cover	all	of	Bayesian	statistics	in	a	few	pages,	and	anyway	there	are	books	on
that. 	Instead	I’m	going	to	walk	through	a	specific	Bayesian	method,	a	general	way	to
answer	multiple-choice	questions	when	the	answer	is	obscured	by	randomness.	My	purpose
is	to	show	the	basic	logic	of	the	process,	and	to	show	that	this	logic	is	commonsensical	and
understandable.	Don’t	let	statistics	be	mysterious	to	you!

Bayesian	statistics	works	by	asking:	What	hypothetical	world	is	most	likely	to	produce	the
data	we	have?	And	how	much	more	likely	is	it	to	do	so	than	the	alternatives?	The	possible
“worlds”	are	captured	by	statistical	models,	little	simulations	of	hypothetical	realities	that
produce	fake	data.	Then	we	compare	the	fake	data	to	the	real	data	to	decide	which	model
most	closely	matches	reality.

With	the	multiple-choice	method	in	this	chapter	you	can	answer	questions	like	“how	likely	is
it	that	the	average	number	of	assaults	per	quarter	really	decreased	after	the	earlier	closing
time?”	Or	“if	this	poll	has	Nunez	leading	Jones	by	3	percent	but	it	has	a	2	percent	margin	of
error,	what	are	the	chances	that	Nunez	is	actually	the	one	ahead?”	Or	“could	the	twentieth
century’s	upward	global	temperature	trend	be	just	a	fluke,	historically	speaking?”

We’ll	work	through	a	small	example	that	has	the	same	shape	as	our	assaults	versus	closing
time	policy	question.	Suppose	there	is	a	dangerous	intersection	in	your	city.	Not	long	ago
there	were	nine	accidents	in	one	year!	But	that	was	before	the	city	installed	a	traffic	light.
Since	the	stoplight	was	installed	there	have	been	many	fewer	accidents.
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Accident	data	surely	involves	many	seemingly	random	circumstances.	Maybe	the	weather
was	bad.	Maybe	a	heartbroken	driver	was	distracted	by	a	song	that	reminded	them	of	their
ex.	A	butterfly	flaps	its	wings,	etc. 	Nonetheless,	it	is	indisputably	true	that	there	were
fewer	accidents	after	the	stoplight	was	installed.

But	did	the	stoplight	actually	reduce	accidents?	We	might	suspect	that	a	proper	stoplight	will
cut	accidents	in	half,	but	we	have	to	regard	this	possibility	as	a	guess,	so	we	say	it’s	a
hypothesis	until	we	find	some	way	to	prove	it.	We’re	going	to	compare	the	following
hypotheses:

1.	 The	stoplight	was	effective	in	reducing	accidents	by	half.

2.	 The	stoplight	did	nothing,	meaning	that	the	observed	decline	in	accidents	is	just	luck.

The	next	thing	we	need	is	a	statistical	model	for	each	hypothesis.	A	model	is	a	toy	version	of
the	world	that	we	use	for	reasoning.	It	incorporates	all	our	background	knowledge	and
assumptions,	encapsulating	whatever	we	might	already	know	about	our	problem.	Silver
used	a	simple	model,	based	on	the	odds	of	any	given	person	dying	on	any	given	day,	to
estimate	the	odds	of	three	people	dying	on	the	same	day	at	any	of	5,000	clinics.	Peirce
created	a	model	based	on	the	stroke	positions	of	42	signatures	that	were	known	to	be
genuine.	A	model	is	by	definition	a	fake.	It’s	not	nearly	as	sophisticated	as	reality.	But	it	can
be	useful	if	it	represents	reality	in	the	right	way.	Creating	a	model	is	a	sort	of	quantification
step,	where	we	encode	our	beliefs	about	the	world	into	mathematical	language.
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For	our	purposes	a	model	is	a	way	to	generate	fake	data,	imagined	histories	of	the	world
that	never	occurred.	We’ll	need	two	assumptions	to	build	a	simple	model	of	our	intersection.
We’ll	assume	that	the	same	number	of	cars	pass	each	day,	and	we’ll	pick	the	number	based
on	the	historical	data	we	have.	We’ll	further	assume	that	there	is	some	percentage	chance
of	each	car	getting	into	an	accident	as	it	does,	and	again	we’ll	use	historical	data,	pre-
stoplight,	to	guess	at	the	proper	percentage.

With	these	two	numbers	in	hand	you	can	imagine	writing	a	small	piece	of	code	to	simulate
the	intersection.	As	each	simulated	car	goes	into	the	simulated	intersection	we	can	flip	a
simulated	coin	to	determine	whether	to	count	an	accident.	We	calibrate	the	“coin”	so	the
cars	crash	at	the	proper	percentage.	This	is	a	reasonable	model	if	we	are	willing	to	assume
that	car	accidents	are	independent:	there	might	have	been	an	accident	at	this	intersection	a
year	or	an	hour	ago	but	that	doesn’t	change	the	odds	that	you	are	about	to	have	an
accident.

By	setting	up	the	simulation	to	produce	the	same	average	accident	rate	as	we	saw	pre-
stoplight,	we’ve	built	a	model	of	the	intersection	without	the	stoplight	that	we	hope	matches
the	real	world.	We	can	use	this	model	to	get	a	feel	for	the	range	of	scenarios	that	chance
can	produce	by	running	the	simulation	many	times,	like	this:
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The	first	two	years	in	each	of	these	charts	are	just	the	original	data,	pre-stoplight.	The	last
three	years	have	been	generated	by	simulation.	In	some	of	these	alternate	histories	the
number	of	accidents	decreased	relative	to	the	pre-stoplight	years,	and	in	others	the	pattern
was	increasing	or	mixed,	all	purely	by	chance.	In	order	to	compare	models,	we	first	need	to
pick	a	more	precise	definition	of	“decline.”	So	let’s	say	that	the	accidents	“declined”	if	all	the
post-stoplight	years	show	fewer	accidents	than	any	of	the	pre-stoplight	years—just	like	the
real	data	from	the	actual	intersection.	This	is	a	somewhat	arbitrary	criterion,	but	your	choice
determines	exactly	which	hypotheses	you	are	testing.	Just	as	our	simulation	expresses	the
world	in	code,	our	test	criterion	expresses	the	hypotheses	mathematically.	By	our	chosen
test,	scenarios	4,	6,	and	7	show	a	decrease	in	the	accident	rate.	We	are	counting	the
branches	of	a	tree	of	possibilities	once	more.

They	key	number	is	how	often	we	see	the	effect	without	the	alleged	cause,	just	like	the
vaccine	deaths	and	Howland	will	case.	None	of	these	alternate	histories	include	a	stoplight,
yet	we	see	a	decline	after	the	second	year	in	3/9	cases,	which	is	a	probability	of	0.33.	This
makes	the	“chance	decline”	theory	pretty	plausible.	A	probability	of	0.33	is	a	33	percent
chance,	which	may	not	seem	“high”	compared	to	something	that	happens	90	percent	of	the
time,	but	if	you’re	rolling	dice	you’re	going	to	see	anything	that	happens	33	percent	of	the
time	an	awful	lot.

This	doesn’t	make	the	“chance	decline”	hypothesis	true.	Or	false.	It	especially	does	not
mean	that	the	chance	decline	theory	has	a	33	percent	chance	of	being	true.	We	assumed
that	“chance	decline”	was	true	when	we	constructed	the	simulation.	In	the	language	of
conditional	probability,	we	have	computed	p(data	|	hypothesis)	which	is	read	“the	probability
of	the	data	given	the	hypothesis.”	What	we	really	want	to	know	is	p(hypothesis	|	data),	the
probability	that	the	hypothesis	is	true	given	the	data.	The	distinction	is	kind	of	brain	bending,
I	admit,	but	the	key	is	to	keep	track	of	which	way	the	deduction	goes.

As	we	saw	in	the	last	section,	the	more	likely	it	is	that	your	data	was	produced	by	chance,
the	less	likely	it	was	produced	by	something	else.	But	to	finish	our	analysis	we	need	a
comparison.	We	haven’t	yet	said	anything	at	all	about	the	evidence	for	the	“stoplight	worked”
theory.

First	we	need	a	model	of	a	working	stoplight.	If	we	believe	that	a	working	stoplight	should	cut
the	number	of	accidents	in	half	in	an	intersection	like	this,	then	we	can	change	our
simulation	to	produce	50	percent	fewer	accidents.	This	is	an	arbitrary	number;	a	more
sohisticated	analysis	would	test	and	compare	many	possible	numerical	values	for	the
reduction	in	accidents.	Here’s	the	result	of	simulating	a	50	percent	effective	stoplight	many
times:

Statistical	Inference

56



Again,	each	of	these	charts	is	a	simulated	alternate	history.	The	first	two	years	of	data	on
each	chart	is	our	real	data	and	the	last	three	years	are	synthetic.	This	time	the	simulation
produces	half	as	many	accidents	on	average	for	the	last	three	years,	because	that’s	how
effective	we	believe	the	stoplight	should	be.	By	our	criterion	that	every	post-stoplight	year
should	be	lower	than	every	pre-stoplight	year,	there’s	a	reduction	in	accidents	in	simulations
1,	2,	4,	5,	6,	7,	and	9.	This	is	7	out	of	9	scenarios	declining,	or	a	7	/	9	=	0.78	probability	that
we’d	see	a	decline	like	the	one	we	actually	saw,	if	the	stoplight	reduced	the	overall	number
of	accidents	by	half.

This	is	good	evidence	for	the	“stoplight	cut	accidents	in	half”	hypothesis.	But	the	probability
of	seeing	this	data	by	chance	is	0.33,	which	is	also	pretty	good.	This	is	not	a	situation	like
Mrs.	Howland’s	will	where	the	odds	of	one	hypothesis	were	miniscule	(identical	signature	by
chance)	while	the	odds	of	the	other	hypothesis	were	good	(forged	signature	to	get	millions	of
dollars).

Finally	we	arrive	at	a	numerical	comparison	of	two	hypotheses	in	the	light	of	chance	effects.
The	key	figure	is	the	ratio	of	the	probabilities	that	each	model	generates	data	like	the	data
actually	observed.	This	is	called	the	likelihood	ratio	or	Bayes	factor,	and	you	can	think	of	it
as	the	odds	in	favor	of	one	model	as	compared	to	another.	The	key	idea	of	comparing
multiple	models	was	fleshed	out	in	the	early	twentieth	century	by	figures	such	as	R.	A.
Fisher 	and	Harold	Jeffreys.32 33
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The	probability	that	“stoplight	cut	accidents	in	half”	could	generate	our	declining	data	is	0.78
while	the	probability	that	“chance	decline”	accounts	for	the	data	is	0.33,	so	the	Bayes	factor
is	0.78	/	0.33	=	2.3.	This	means	that	the	odds	of	the	“stoplight	worked”	model	generating	the
observed	data,	when	compared	to	the	“chance	decline”	model,	are	2.3	to	1	in	favor.

This	doesn’t	make	the	“stoplight	cut	accidents	in	half”	story	true.	But	it	definitely	seems	more
likely.

These	2.3	to	1	odds	are	middling.	Converting	the	odds	to	a	probability,	that’s	a	2.3	/	(2.3+1)
=	70	percent	chance	the	stoplight	worked.	That	means	if	you	write	a	story	which	says	it	did
work,	there’s	a	30	percent	chance	you’re	wrong.	In	other	situations	you	might	have	a	90
percent	or	99	percent	or	even	99.9	percent	chance	of	guessing	correctly.	But	there	can	be
no	fixed	scale	for	evaluating	the	odds,	because	it	depends	on	what’s	at	stake.	Would	2.3	to
1	odds	be	good	enough	for	you	to	run	a	story	that	might	look	naive	later?	What	if	that	story
convinced	the	city	government	to	spend	millions	on	stoplights	that	didn’t	work?	What	if	your
story	convinced	the	city	government	not	to	spend	millions	on	stoplights	that	did	work,	and
could	have	saved	lives?

Even	so,	“stoplight	worked”	is	a	better	story	than	“chance	decline.”	A	better	story	than	either
would	be	“stoplight	probably	worked.”	Journalists,	like	most	people,	tend	to	be
uncomfortable	with	intermediate	probability	values.	A	0	percent	or	100	percent	chance	is
easy	to	understand.	A	50/50	chance	is	also	easy:	You	know	essentially	nothing	about	which
alternative	is	better.	it’s	harder	to	know	what	to	do	with	the	70/30	chance	of	our	2.3	to	1
odds.	But	if	that’s	your	best	knowledge,	it’s	what	you	must	say.

In	real	work	we	also	need	to	look	at	more	than	the	data	from	just	one	stoplight.	We	should
be	talking	to	other	sources,	looking	at	other	data	sets,	collecting	all	sorts	of	other	information
about	the	problem.	Fortunately	there	is	a	natural	way	to	incorporate	other	knowledge	in	the
form	of	prior	odds,	which	you	can	think	of	as	the	odds	that	the	stoplight	worked	given	all
other	evidence	except	your	data.	This	comes	out	in	the	mathematical	derivation	of	the
method,	which	says	we	need	to	multiply	our	Bayes	factor	of	2.3	to	1	by	the	prior	odds	to	get
a	final	estimate.

Maybe	stoplight	effectiveness	data	from	other	cities	shows	that	stoplights	usually	do	reduce
accidents	but	seem	to	fail	about	a	fifth	of	the	time,	so	you	pick	your	prior	odds	at	4	to	1.
Multiplying	by	your	2.3	to	1	strengthens	your	final	odds	to	9	to	1.	The	logic	here	is:	stoplights
in	other	cities	seem	to	work,	and	this	one	seems	to	work	too,	so	the	totality	of	evidence	is
stronger	than	the	data	from	just	this	one	stoplight.

Or	maybe	you	have	talked	to	an	expert	who	tells	you	that	stoplights	usually	only	work	in
large	and	complex	highway	intersections,	not	the	quiet	little	residential	intersection	we’re
looking	at,	so	you	pick	prior	odds	of	1	to	5,	which	could	also	be	written	0.2	to	1.	In	this	case
even	our	very	plausible	data	can’t	overwhelm	this	strong	negative	evidence,	and	the	final
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odds	are	2.3	x	0.2	=	0.46	to	1,	meaning	that	it’s	more	than	twice	as	likely	that	the	stoplight
didn’t	work.	The	logic	here	is:	most	stoplights	at	this	kind	of	intersection	don’t	work,	and	this
undermines	the	evidence	from	this	one	stoplight,	which	leads	us	to	believe	that	the	observed
decline	is	more	likely	than	not	just	due	to	chance.

Multiplying	by	the	prior	is	mathematically	sound,	yet	it’s	often	unclear	how	to	put	probabilities
on	available	evidence.	If	the	mayor	of	Detroit	tells	you	she	swears	by	stoplights	in	her	city,
what	does	this	say	about	the	odds	of	stoplights	working	versus	not	working	as	a	numeric
value?	There	is	no	escape	from	judgment.	But	even	very	rough	estimates	may	be	usefully
combined	this	way.	If	nothing	else,	the	existence	of	the	prior	in	statistical	formulas	helpfully
reminds	us	to	consult	all	other	sources!

There	is	a	lot	more	to	say	about	this	method	of	comparing	the	likelihood	that	different
models	generated	your	data.	The	method	here	only	applies	to	multiple-choice	questions,
whereas	real	work	often	estimates	a	parameter:	how	much	did	the	stoplight	reduce
accidents?	And	we’ve	barely	touched	on	modeling,	especially	the	troubling	possibility	that	all
of	your	models	are	such	poor	representations	of	reality	that	the	calculations	are
meaningless. 	But	the	fundamental	logic	of	comparing	how	often	different	possibilities
would	produce	your	observed	data	carries	through	to	the	most	complex	analyses.	I	hope	this
example	gives	the	flavor	of	how	a	single	unifying	framework	has	been	used	to	solve
problems	in	medicine,	cryptography,	ballistics,	insurance,	and	just	about	every	other	human
activity. 	Bayesian	statistics	is	something	remarkable,	and	I	find	its	wide	success
incredible,	unlikely,	and	almost	shockingly	too	good	to	be	true.	You	can	always	start	from	the
general	framework	and	work	your	way	toward	the	details	of	your	problem.	This	is	sometimes
more	work,	but	it	is	the	antidote	to	staring	at	equations	and	wondering	if	they	apply.

xix
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What	Would	Have	Happened	Anyway?
Let’s	suppose	we’ve	ruled	out	luck	as	an	explanation	for	our	data.	Suppose	we	have	inferred
that	something	in	the	assaults	data	really	did	change	around	the	time	the	new	closing-time
policy	came	into	effect.	Attributing	this	change	to	the	new	closing	times	is	another	matter
entirely.

It	would	be	easy	to	determine	the	true	effects	of	the	new	policy	if	we	knew	how	many
assaults	we	would	have	seen	had	the	policy	never	gone	into	effect.	To	say	that	A	caused	B
is	to	say	that	B	would	not	have	happened	without	A.	But	we	only	have	data	with	the	policy
change.	Every	statement	about	cause	is	really	a	statement	about	the	way	the	world	would
have	been	without	that	cause,	a	counterfactual	statement.	This	is	one	reason	why	causation
is	so	tricky:	it	requires	reasoning	about	imaginary	worlds	that	we	can	never	observe	directly.

This	problem	can	only	really	be	solved	with	a	time	machine.	We	can	go	back	in	time,	prevent
the	new	closing	time	from	taking	effect,	then	wait	to	collect	equivalent	data	in	this	divergent
universe.	Lacking	a	time	machine,	we’ll	once	again	use	a	model,	a	way	of	describing	the
alternate	histories	we	can’t	ever	observe	directly.

If	we	had	two	identical	copies	of	New	South	Wales,	we	could	just	change	the	policy	in	one
city	and	not	the	other,	and	compare	the	results.	This	is	the	logic	behind	the	controlled
experiment	where	you	give	a	new	drug	to	the	treatment	group	and	not	to	the	control	group.
Journalists	don’t	normally	get	to	design	experiments,	and	anyway	there	are	never	two
identical	cities	to	experiment	on.	But	we	could	make	comparisons	with	similar	cities	or
neighborhoods.

Just	this	sort	of	comparison	casts	great	doubt	on	an	attempt	to	reduce	gun	violence	in
Richmond,	Virginia,	in	the	late	1990s.	Project	Exile	aimed	to	reduce	the	number	of	murders
by	increasing	the	punishment	for	illegal	gun	possession	(such	as	when	a	previously
convicted	felon	is	found	to	be	carrying	a	gun).	The	minimum	sentence	was	effectively
increased	from	five	to	10	years	by	shifting	all	such	cases	from	state	to	federal	courts.

At	first	glance,	it	worked.
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Gun	homicides	per	100,000	residents	in	Richmond,	Virginia,	before	and	after	Project	Exile.	Adapted	from	Raphael	and
Ludwig,	2003.

Gun-related	homicides—by	far	the	majority	of	homicides—decreased	after	Project	Exile
went	into	effect.	The	policy	was	widely	lauded	as	a	success	by	the	National	Rifle
Association,	The	New	York	Times,	and	President	George	W.	Bush.

But	the	evidence	for	harsher	sentences	in	Richmond	is	not	nearly	as	strong	as	it	is	for	earlier
closing	times	in	New	South	Wales.	First,	the	data	is	very	scarce.	There	are	only	three	data
points	after	the	program	was	established,	for	1997,	1998,	and	1999.	Further,	the	number	of
gun	homicides	actually	increased	dramatically	for	1997,	even	though	gun	possession
offenders	were	tried	in	federal	courts	beginning	in	February	1997.	However,	1998	and	1999
do	show	solid	declines,	ending	lower	than	anything	in	the	previous	decade.

Let’s	table	for	a	moment	the	question	of	chance;	with	only	three	data	points,	luck	becomes	a
real	concern.	Suppose	we	believe	the	decline	is	real	and	permanent,	and	not	just	fluke	due
to	natural	variation.	We	still	have	the	problem	of	attributing	cause	to	Project	Exile	and	not
something	else.	Really	what	we	need	is	another	identical	Richmond	to	show	us	the	alternate
history	where	Project	Exile	never	happened.

We	don’t	have	another	Richmond,	but	there	are	many	other	cities.	If	those	cities	are	similar
enough	in	the	right	ways,	they	might	approximate	the	lost	history	where	Richmond	never
had	a	Project	Exile.	Here’s	the	homicide	rate	data	from	other	cities	which	are	similar	in
various	ways,	but	none	of	which	implemented	such	a	program.
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Gun	homicides	per	100,000	residents	in	Richmond,	Virginia,	before	and	after	Project	Exile,	compared	to	other	cities.	From
Raphael	and	Ludwig,	2003.

Virtually	every	city	in	the	United	States	experienced	a	decline	in	gun	violence	in	the	late
1990s.	In	fact	violent	crime	of	all	types	decreased	all	through	the	country	during	the	1990s.
No	one	really	knows	why,	though	there	are	many	theories. 	Evidently,	you	didn’t	need	to
change	sentencing	guidelines	for	illegal	gun	possession	to	see	a	drop	in	gun	crime	in	the
late	1990s.

Maybe	you	can	still	say	that	Richmond	had	a	larger	decline.	But	Richmond	also	had	more
crime	to	begin	with,	and	a	big	spike	in	1997.	Proportionally,	as	a	percentage	change,
Richmond’s	decrease	was	well	in	line	with	other	cities.	You	can	see	this	if	you	plot	the	data
on	a	logarithmic	scale.
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Gun	homicides	per	100,000	residents	in	Richmond,	Virginia,	and	other	cities,	on	a	logarithmic	scale.	From	Raphael	and
Ludwig,	2003.

Each	vertical	step	on	a	logarithmic	scale	corresponds	to	an	increase	by	a	constant	multiplier,
which	means	we	are	comparing	percentage	change	instead	of	absolute	numbers.	When	we
compare	this	way,	Richmond	doesn’t	look	particularly	better	than	other	types	of	cities.	Most
cities	experienced	a	drop	in	gun	violence	of	about	the	same	percentage	as	Richmond,	which
appears	on	this	chart	as	a	decrease	of	about	the	same	slope.	This	is	evidence	that	doing
nothing	would	have	been	just	as	effective.

Here	you	can	have	an	argument	about	whether	percentage	change	or	absolute	numbers	are
the	right	way	to	compare	a	drop	in	crime	between	cities.	You	can	also	try	to	construct	more
elaborate	analyses	showing	that	while	murders	in	Richmond	would	have	dropped	anyway,
Project	Exile	made	them	drop	more.	We’re	far	from	the	last	word,	but	we’re	also	past	a
simple	argument	that	Project	Exile	caused	the	observed	fall.

And,	of	course,	you	can	jump	out	of	this	framing	entirely	and	ask	if	increased	punishment	is
really	the	way	that	we,	as	a	society,	want	to	deal	with	a	type	of	crime	that	primarily	involves
and	affects	already	disadvantaged	groups.	As	always,	the	data	is	never	the	full	story.
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Back	to	New	South	Wales,	does	the	closing-time	policy	change	suffer	from	the	same	sort	of
“would	have	happened	anyway”	problem?	Again,	the	theoretically	perfect	test	would	require
an	identical	copy	of	the	city.	But	we	do	have	data	from	the	adjacent	neighborhood	of
Hamilton,	which	did	not	see	a	restriction	on	closing	times.

Number	of	assaults	per	quarter	in	the	central	business	district	(CBD)	of	New	South	Wales,	where	closing	time	was
restricted	to	3	a.m,	and	the	neighboring	region	of	Hamilton	where	it	was	not.	From	Kypri,	Jones,	McElduff	and	Barker,
2010.

And	sure	enough,	there	was	no	apparent	reduction	in	assaults	in	Hamilton.	The	main
weakness	of	this	sort	of	comparison	is	that	Hamilton	is	not	perfectly	matched	with	the	area
where	the	closing	time	was	changed.	It	has	fewer	bars	and	a	far	lower	rate	of	assaults	to
begin	with.	Still,	this	comparative	data	provides	a	minimal	sanity	check.	We	need	to	exclude
the	possibility	that	something	else	happened	around	the	same	time	that	lowered	assault
rates	generally.	That’s	what	seems	to	have	happened	with	homicides	in	American	cities	in
the	late	1990s.	The	other	reason	for	looking	at	the	data	for	the	adjacent	district	is	to	make
sure	that	crime	was	actually	reduced,	not	just	displaced	to	nearby	areas.

Any	claim	of	cause	is	implicitly	a	claim	about	data	from	a	world	we	don’t	ever	get	to	see:	a
world	where	the	cause	never	happened.	it’s	worth	thinking	about	how	to	approximate	this
world	through	comparisons	or	modeling.	Just	looking	for	increases	or	decreases	is	not
enough.	As	the	Project	Exile	researchers	put	it:

One	larger	lesson	from	our	analysis	of	Richmond’s	Project	Exile	is	the	apparent
tendency	of	the	public	to	judge	any	criminal	justice	intervention	implemented	during	a
period	of	increasing	crime	as	a	failure,	while	judging	those	efforts	launched	during	the
peak	or	downside	of	a	crime	cycle	as	a	success.
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And	that’s	just	not	right.	The	correct	comparison	is	not	“up	or	down,”	but	“what	would	have
happened	otherwise?”	This	applies	just	as	well	to	the	question	of	whether	chicken	soup
cures	colds	as	it	does	to	the	question	of	whether	harsher	sentences	deter	crime.
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Causal	Models
Cause	cannot	usually	be	read	directly	from	the	data,	no	matter	how	much	we	might	wish	this
were	the	case.	Consider	this	graph	of	mortality	versus	smoking	rate	across	different
occupations:

Normalized	mortality	rate	versus	smoking	rate	for	different	professions	in	the	United	Kingdom,	1970–1972.

There	is	a	clear	association	between	smoking	and	mortality—a	correlation.	It	seems	natural
to	say	that	this	is	evidence	that	smoking	contributes	to	an	early	death.	But	how	about	this
chart:
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Correlation	between	countries’	annual	per	capita	chocolate	consumption	and	the	number	of	Nobel	Prize	winners.	From
Messerli.

If	the	previous	chart	shows	that	smoking	causes	premature	death,	then	this	chart	shows	that
eating	chocolate	makes	you	more	likely	to	win	a	Nobel	Prize.	No?	But	then	why	do	we
believe	the	first	correlation	is	causal,	while	this	one	isn’t?	There	must	be	some	other	factor
here;	our	reasoning	must	be	including	something	other	than	just	the	data.

Here’s	a	more	ambiguous	case:
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U.S.	quarterly	unemployment	rate	versus	investment	to	GDP	ratio	from	1990	to	2010,	plotted	by	John	Taylor.

How	would	you	describe	this	graph?	Maybe:	When	investment	goes	up,	unemployment
goes	down.	But	saying	it	that	way	makes	it	sound	like	increasing	investment	would	cause
unemployment	to	drop,	and	that’s	not	necessarily	true.	We	might	as	well	say	that	when
unemployment	goes	down,	investment	goes	up,	implying	a	cause	in	the	other	direction.
Perhaps	we	could	say:	Investment	and	unemployment	move	together,	in	opposite	directions.
That’s	all	we	actually	know	from	this	data,	yet	it	feels	unnatural	to	write	about	an	association
between	two	variables	while	saying	nothing	about	the	causal	relationship	between	them.	We
are	wired	to	see	causes.

The	difference	in	our	intuitions	about	these	three	charts	has	to	do	with	whether	or	not	we
know	a	story	that	explains	how	the	cause	relates	to	the	effect.	You	can	probably	imagine
how	investment	would	lead	to	employment,	or	perhaps	how	employment	would	lead	to
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investment.	You’ve	also	probably	heard	that	smoking	causes	cancer.	But	there’s	no	obvious
story	that	links	eating	chocolate	and	winning	a	Nobel	Prize.

We	are	dealing	with	a	correlation	here,	a	pattern	in	two	variables	such	that	when	one
changes	the	other	changes	as	well.	There	are	various	mathematical	definitions	of	a
correlation,	but	for	our	purposes	the	most	straightforward	conception	is	fine.	Scatterplots	are
a	popular	way	to	compare	two	variables,	but	anything	which	shows	two	variables	can	reveal
a	correlation.	One	of	those	variables	might	implicitly	be	the	time	of	an	event,	as	in	our	crime
examples	where	we	were	looking	at	the	correlation	between	a	change	in	policy	and	the
number	of	assaults	or	murders.	Here’s	another	type	of	correlation,	from	an	analysis	of	men
writing	a	first	message	to	women	on	the	dating	site	OKCupid:

This	data	seems	to	show	that	including	the	word	“awesome”	in	a	first	message	will	cause	an
above	average	reply	rate,	while	including	the	word	“sexy”	will	cause	a	much	lower	chance	of
a	response.	But	that’s	not	what	the	data	actually	says.	That’s	just	a	story	that	leaps	to	mind.
it’s	easy	to	imagine	why	women	would	ignore	a	creepy	first	message	from	a	stranger	who
called	them	“sexy.”
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As	usual,	our	stories	about	the	data	may	or	may	not	reflect	reality,	and	the	principle	method
of	testing	our	stories	is	trying	to	imagine	how	else	the	data	might	have	come	to	be.
Fortunately,	there	are	not	that	many	ways	two	variables	can	become	correlated.

These	little	graphs	are	causal	models.	Like	all	statistical	models,	they	are	not	reality	but	a
way	of	talking	and	thinking	about	reality.	Each	circle	is	a	variable,	something	that	is	or	could
be	quantified.	Each	little	arrow	means	“causes.”	What	exactly	a	“cause”	is	has	been	debated
since	Aristotle,	but	in	this	framework	it	is	defined	in	terms	of	possible	interventions:	X	causes
Y	means	that	there	is	some	specific	thing	you	could	do	in	the	world	to	force	the	variable	X	to
take	a	specific	value,	and	if	you	did	that	the	outcome	of	Y	would	change	in	a	probabilistic
sense.

These	causes	are	not	definite.	To	say	that	smoking	causes	cancer	means	that	if	you	could
force	someone	to	smoke,	they	would	be	more	likely	to	get	cancer.	Not	that	they	will	get
cancer,	but	that	it	increases	the	probability.	The	arrows	in	these	diagrams	are	fuzzy,
probabilistic	cause.	Instead	of	“causes,”	think	“changes	the	distribution	of.”

This	level	of	abstraction	lets	us	talk	about	cause	in	a	very	general	way.	Every	correlation	of
any	two	variables	is	the	result	of	one	of	these	causal	patterns,	or	more	likely	a	combination
of	them.	Usually,	the	data	alone	cannot	tell	you	which	pattern	produced	your	correlation.
For	example,	X	causes	Y	and	Y	causes	X	appear	the	same	in	the	data.	We	have	to	use
other	information	to	figure	out	the	correct	causal	structure.
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There	could	be	no	causal	relationship	at	all,	just	random	coincidence	between	X	and	Y.	As
we’ve	seen,	coincidence	can	be	quantified	by	estimating	the	probability	that	chance
generated	your	data.	In	the	OKCupid	case	we	could	ask:	How	often	does	a	randomly
chosen	word	have	an	above-	or	below-average	response	rate	as	large	as	these	words?	If
we	plot	the	response	rates	of	lots	of	words,	we	may	find	that	these	particular	words	are	not
special	at	all;	this	chart	could	just	show	some	particularly	entertaining	words	that	have	quite
ordinary	fluctuations	in	response	rate.	If	you	can	cherry-pick	the	evidence,	you	can	prove
whatever	you	want.

It	can	also	be	that	Y	causes	X,	but	not	in	this	case.	The	reply	cannot	cause	the	initial
message	because	causes	have	to	come	before	their	effects.	In	other	cases	the	causality
could	flow	in	the	other	direction,	or	the	variables	could	affect	each	other	in	a	feedback	loop.
High	unemployment	might	be	both	a	cause	and	effect	of	low	investment.	If	cities	with	more
guns	are	associated	with	higher	crime,	it	could	be	that	access	to	weapons	causes	crime,	or
it	could	be	that	living	in	a	dangerous	place	makes	people	want	to	buy	a	gun.	Or	the
association	could	have	happened	purely	by	chance.
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In	reality,	it’s	probably	some	combination	of	all	of	these	effects.	The	data	you	have	is	the
result	of	people	using	the	guns	they	have	and	people	buying	guns	because	of	the	high	crime
rate	and	a	whole	range	of	chance	factors.

It	could	also	be	the	case	that	some	other	factor	Z	causes	both	X	and	Y.	For	example,	there
could	be	something	that	causes	a	man	to	write	about	a	woman’s	appearance	and	causes	a
woman	to	reply	less	often.	This	is	the	possibility	most	often	neglected	in	casual	data
analyses,	but	there	could	be	any	number	of	factors	that	would	influence	both	language	use
and	response	rate.
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Like	attractiveness.	Perhaps	attractive	women	get	a	lot	more	messages	than	average—too
many	to	want	to	reply	to	all	of	them—so	their	overall	response	rate	is	lower.	If	we	believe
that	“attractiveness”	is	a	real	and	coherent	notion	that	could	be	usefully	measured	in	some
way—perhaps	by	asking	many	people	to	rate	a	photograph—then	it	is	reasonable	to	talk
about	it	as	a	variable.	This	leaves	us	with	two	plausible	hypotheses.
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There	is	no	way	to	tell	these	two	hypotheses	apart	from	the	data	above,	because	both	would
produce	the	same	correlations.

The	third	variable	in	this	three-way	structure	is	called	a	confounder,	and	confounding
variables	appear	frequently	in	real	world	analyses.	The	key	is	to	look	for	another	variable
that	causes	both	of	the	variables	you	see	as	related.	For	example,	overall	economic	growth
could	both	reduce	unemployment	and	increase	investment.	A	rich	country	might	both	import
a	lot	of	chocolate—a	luxury	good—and	fund	advanced	research.	The	reduction	in	crime
rates	after	the	bar’s	closing	time	changed	could	be	because	the	police	began	patrolling	to
enforce	the	earlier	closing	time.

But	then	again,	a	stressful	profession	could	both	make	you	smoke	and	reduce	your	lifespan.
The	tobacco	industry	has	attacked	the	association	between	smoking	and	disease	for
decades	on	precisely	this	basis	of	possible	confounding	variables	(and	many	other
arguments ).	In	the	mid	1960s,	one	statistician	received	tobacco	industry	funding	“to	seek
to	reduce	the	correlation	of	smoking	and	diseases	by	introduction	of	additional	variables.”
As	repugnant	as	this	might	be,	we	have	to	take	seriously	the	logical	possibility	of	a	spurious
correlation.	Ultimately,	the	proof	of	smoking’s	harm	also	relies	on	other	types	of	non-
correlational	evidence	such	as	animal	experiments.	We	can	tell	a	story	about	smoke	causing
cancer	that	we	can	confirm	in	the	lab.

Confounding	variables	are	common	in	practice.	Coffee	might	cause	cancer,	but	then	again
maybe	a	certain	type	of	person	both	smokes	and	drinks	coffee. 	Poor	sleep	might	cause
poor	grades	in	school,	or	poverty	might	cause	both. 	The	confounding	circumstance	may
not	be	measured	in	the	data	you	have	and	may	not	even	be	something	that	can	be
measured	directly.	You	can	only	find	a	confounder	by	thinking	about	the	broader	context	of
the	data.

Once	you	have	found	a	confounding	variable,	it	may	be	possible	to	subtract	off	its	effect,	a
process	that	is	called	controlling	for	a	variable.	For	example,	you	could	investigate	the
relationship	between	smoking	and	cancer	while	controlling	for	the	stress	of	different
professions.	This	only	works	if	your	causal	model	is	otherwise	accurate.	Again,	it’s	a	way	to
ask	about	a	counterfactual:	What	would	be	the	relationship	between	employment	and
investment	if	growth	didn’t	drive	both	of	them?	Or	how	much	would	women	make	if	they
worked	the	same	number	of	hours	as	men?	Reasoning	about	imaginary	worlds	is	always
tricky.

I’ve	used	pictures	informally	to	talk	about	causal	structures,	but	they’re	actually	part	of	a
well-founded	mathematical	theory	of	cause	developed	in	late	twentieth	century	by	Judea
Pearl	and	others. 	These	pictures	are	called	graphical	models,	not	because	they	are
graphics	but	because	they	are	graphs	in	the	mathematical	sense	of	nodes	and	edges.	You
can	use	them	to	describe	much	more	complex	causal	structures	with	more	variables,	like
this	model	from	one	of	my	favorite	statistics	books:
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From	Kaplan.

In	this	invented	network	we	have	data	for	the	pink	variables	but	not	the	gray	variable.	In
general	there	will	be	many	intervening	factors	you	can’t	measure,	as	well	as	unknown
causes	that	you	may	never	have	thought	of.	You	just	don’t	know	the	correct	causal	structure
of	the	world,	but	at	least	you	can	draw	little	pictures	of	the	possibilities	you	can	imagine.

The	best	way	to	figure	out	causation	is	to	do	an	experiment.	After	all,	causation	is	defined	in
terms	of	interventions,	and	an	experiment	is	all	about	intervening.	In	the	online	dating	case,
we	could	take	many	men	and	randomly	tell	each	one	to	include	or	exclude	certain	words	in
their	first	message	to	a	woman,	then	tally	the	response	rate	for	each	word.	This	is	different
from	the	data	we	already	have	in	a	crucial	way.	In	this	experiment	the	men	do	not	decide
which	words	to	use	(we	have	intervened!).	They	cannot	base	their	decision	on	the	woman’s
appearance,	or	for	that	matter	anything	about	themselves	or	the	woman	to	whom	they	are
writing.	This	removes	the	effect	of	many	potential	confounding	variables	in	one	shot.

This	type	of	experiment	is	a	generalization	of	the	idea	of	comparing	cases.	We	repeat	a
particular	scenario	many	times	with	and	without	the	hypothetical	cause	and	see	if	the	effect
appears	more	often	when	the	cause	is	present.	John	Stuart	Mill	wrote	about	this	“method	of
difference”	in	his	1843	A	System	of	Logic:
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If	an	instance	in	which	the	phenomenon	under	investigation	occurs,	and	an	instance	in
which	it	does	not	occur,	have	every	circumstance	save	one	in	common,	that	one
occurring	only	in	the	former;	the	circumstance	in	which	alone	the	two	instances	differ,	is
the	effect,	or	cause,	or	a	necessary	part	of	the	cause,	of	the	phenomenon.

Mill	understood	that	it	would	not	always	be	possible	to	distinguish	“X	causes	Y”	from	“Y
causes	X”	from	data	alone	(“is	the	effect,	or	cause”).	Experiments	are	one	way	out,	because
we	set	the	value	of	X	and	watch	what	happens	to	Y.	The	hitch	is	that	we	don’t	know	what
would	have	happened	to	Y	if	we	didn’t	set	X.	How	many	non-smokers	would	have	developed
lung	cancer	anyway?	This	is	why	modern	experiments	use	a	control	group	for	comparison.
To	ensure	that	the	two	groups	are	otherwise	identical	(“every	circumstance	save	one	in
common”),	we	can	randomly	assign	people	between	them.	This	basic	design	was	formalized
at	the	end	of	the	nineteenth	century	and	is	known	as	a	randomized	controlled	experiment.

But	again,	journalists	don’t	normally	get	to	do	experiments.	Sometimes	we	can	evaluate
other	people’s	experiments,	but	usually	we	are	reduced	to	dealing	with	observational	data.
This	makes	cause	an	especially	tricky	subject.	Causal	models—our	little	arrow	diagrams—
are	a	way	of	expressing	the	possible	causal	relationships	between	variables.	This	can	clarify
our	thinking	and	hopefully	lead	to	ideas	about	how	to	test	our	stories	against	reality.
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Truth	by	Elimination
In	2011	the	Associated	Press	revealed	that	the	New	York	Police	Department	had	been
closely	monitoring	53	New	York	City	mosques	with	methods	including	informants	and	video
surveillance. 	In	2012,	the	NYPD	released	a	massive	database	of	hundreds	of	thousands
of	stop-and-frisk	incidents,	where	cops	stopped	people	on	the	street,	without	cause,	to	check
for	weapons	and	drugs.	A	journalist	analyzed	this	data	and	found	that	there	was	a	15
percent	above	average	number	of	stop-and-frisks	within	100	meters	of	certain	New	York	City
mosques.

A	small	portion	of	the	NYPD’s	stop-and-frisk	data.

This	might	mean	that	the	NYPD	is	deliberately	targeting	Muslims	on	the	street.	But	there	are
many	other	ways	this	data	could	have	come	to	be.	Let’s	list	some	possibilities:

Police	are	deliberately	stopping	Muslims	near	mosques.

It’s	sheer	chance.
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Mosques	could	be	in	more	heavily	populated	areas.

Patrol	times	might	coincide	with	prayer	times,	for	whatever	reason.

There	might	be	more	police	assigned	to	the	area	due	to	higher	crime	rates.

The	data	might	be	in	error.

You	could	misunderstand	how	the	data	is	collected.

This	is	the	central	problem	of	data	analysis:	The	data	alone	cannot	tell	us	that	a	story	is
true,	because	there	could	be	many	other	stories	that	produce	the	same	data.	In
principle	all	scientific	analysis	is	a	two-step	process:	Invent	a	number	of	hypotheses,
then	pick	the	one	which	is	best	supported	by	evidence.	In	journalism	work,	a	narrative
extracted	from	the	data—“the	story”—is	morally	equivalent	to	a	hypothesis.

Actually,	neither	scientists	nor	journalists	really	work	like	this.	Many	people	have	pointed
out	that	the	interplay	between	inventing	and	testing	ideas	is	much	more	complex	than
this	little	sketch. 	In	real	work	you	go	back	and	forth,	refining	ideas,	gathering	more
information,	finally	getting	your	interview	with	a	crucial	source,	testing	theories,	catching
up	on	other	people’s	work,	stumbling	into	flashes	of	creativity,	drinking	a	lot	of	coffee,
arguing	with	critics,	going	back	to	the	drawing	board,	changing	your	mind,	grinding
forward.	We	should	not	consider	this	idea	of	creating	and	then	testing	hypotheses	to	be
a	literal	description	of	our	truth-finding	process.	Instead	it	describes	a	type	of	argument.
It	captures	the	core	logic	of	why	we	should	believe	something	is	true,	not	necessarily
the	steps	that	actually	led	us	to	believe	it.

Coming	up	with	reasonable	stories/hypotheses	is	a	creative	process	that	has	to	draw	on
specific	background	knowledge.	Peirce	called	this	hypothesis-generation	process
abduction	and	noticed	that	it	followed	certain	rules:	Your	stories	must	explain	the	data,
and	they	must	not	contradict	known	facts.	Other	than	that,	the	possibilities	are	wide
open.	But	there	are	a	number	of	things	that	need	to	be	checked	in	almost	any	story.
Your	list	of	hypotheses	should	include	definitional	problems,	quantification	troubles,
errors	in	the	data,	random	chance,	and	as	many	confounding	variables	as	you	can	think
of.	The	basic	rule	is	this:	you	have	to	imagine	it	before	you	can	prove	that	it’s	true.

Is	NYPD	targeting	of	Muslims	producing	our	data?	The	truth	may	be	any	of	the
possibilities	above,	some	combination,	or	something	that’s	not	even	on	the	list.

If	you	have	well-quantified	variables	and	good	models,	there	are	statistical	solutions	to
the	problem	of	choosing	between	competing	hypotheses.	Much	of	the	statistical	work	of
the	last	hundred	years	has	been	devoted	to	just	this	sort	of	hypothesis	testing,	as	we
saw	in	the	section	on	inference.	These	are	powerful	tools,	but	most	problems	in
journalism	do	not	have	neatly	quantified	evidence.	I	don’t	know	how	to	express	all	of	the
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above	stop-and-frisk	hypotheses	in	the	same	symbolic	language,	nor	how	to	make
reasonable	probability	estimates	for	each	possibility.	What’s	the	chance	you’ve
misunderstood	the	data	format?	In	practice	the	solution	is	to	double-check	the	format,
rather	then	trying	to	compute	a	probability	of	error.

There	are	exceptions,	highly	structured	cases	where	the	full	power	of	statistical
hypothesis	testing	can	be	applied,	such	as	election	predictions.	Even	then,	be	wary:
Have	you	included	all	the	different	ways	the	election	could	be	rigged?	The	world	will
always	find	ways	to	surprise	a	model.

Ultimately	there	is	no	language	more	powerful	than	human	language,	and	no	reasoning
more	powerful	than	general	human	reasoning.	That	doesn’t	mean	looking	at	the	data
and	intuiting	the	answer.	There	are	many	methods	between	intuition	and	statistics.

Good	data	analysis	is	more	about	ruling	out	many	false	interpretations,	rather	than
trying	to	prove	a	single	interpretation	is	correct.	This	may	seem	disappointing—can
there	be	no	certainty?—yet	this	idea	is	one	of	the	great	innovations	in	philosophy	of
science.	It	was	best	articulated	by	Karl	Popper	in	the	1930s.	His	central	idea	was	that
falsification	is	a	much	more	robust	practice	than	verification.

There	are	many	reasons	why	proving	a	story	wrong	is	a	better	goal	than	proving	a	story
right.	If	you	only	ever	look	for	evidence	that	confirms	your	story,	you	may	only	ever	find
the	evidence	that	confirms	your	story.	Disconfirmation	is	also	more	powerful	than
confirmation	in	the	sense	that	additional	confirming	evidence	doesn’t	really	make	a
confirmed	story	more	true,	but	once	a	story	is	contradicted	by	a	single	solid	fact	no
amount	of	further	evidence	can	rescue	it.	And	we	know,	starting	with	a	series	of
landmark	cognitive	psychology	experiments	in	the	1970s,	that	there	are	biases	in
human	cognition	that	lead	us	to	reject,	discredit,	and	selectively	forget	information	that
doesn’t	fit	with	what	we	already	believe.

It’s	useful	to	inquire	against	your	hopes.	Your	critics	certainly	will.

Also,	falsification	is	a	way	of	clarifying	the	practical	content	of	a	hypothesis.	Is	there
some	way,	at	least	in	principle,	that	your	hypothesis	could	be	proved	wrong?	If	a
hypothesis	says	anything	about	the	world,	it	should	be	possible	to	go	check	if	the	world
really	is	that	way.	I	don’t	mean	anything	cosmic	by	this.	“The	police	shift	change
happens	during	evening	prayers”	is	a	perfectly	good	hypothesis	that	could	be	tested	by,
say,	getting	a	copy	of	the	precinct	schedule.
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Carl	Sagan	throws	down.

The	idea	of	generating	competing	hypotheses	and	then	disproving	them	appears	in	many
forms,	in	many	places.	Aristotle	wrote	about	the	idea	of	different	possible	causes	for	the
same	event.	Peirce	certainly	understood	the	principle	in	1868	when	he	used	his	signature
model	to	rule	out	chance	as	an	explanation.	Sir	Arthur	Conan	Doyle	had	Sherlock	Holmes
talk	about	finding	truth	by	testing	alternatives	in	1926,	in	the	quote	that	opens	this	chapter.	A
1980s	CIA	textbook	on	intelligence	analysis	contains	a	particularly	readable	description	of	a
practical	method,	neatly	tied	to	the	theory	of	cognitive	biases.

In	short,	the	method	is	this:	At	the	beginning	of	the	data	analysis	work,	dream	up	all	sorts	of
possible	interpretations,	all	sorts	of	possible	stories.	The	available	data	will	rule	some	of
them	out,	either	obviously	so	or	through	statistical	testing.	The	stories	which	survive	that	test
are	the	ones	you	have	to	choose	between.	To	do	that,	you	will	need	more	information.	The
remaining	set	of	hypotheses	will	tell	you	which	information	you	need	to	rule	each	of	them
out,	whether	that’s	another	data	set	or	a	conversation	with	a	knowledgeable	source.

Each	of	the	stop-and-frisk	hypotheses	suggests	a	different	investigative	technique.	We	can
examine	the	effects	of	chance	statistically,	perhaps	by	counting	the	number	of	stops	within
100-meter	radius	circles	placed	randomly	throughout	the	data,	not	centered	on	mosques	at
all.	But	pretty	much	every	other	hypothesis	has	to	be	tested	against	information	that	isn’t	in
the	stop-and-frisk	data.	We	might	want	to	add	other	data	to	the	analysis;	for	example,	we
could	correlate	mosque	locations	with	population	density.	Or	we	might	need	to	have	a
conversation	with	a	cop	who	can	explain	how	police	patrols	are	assigned.	The	goal	here	isn’t
to	prove	any	particular	hypotheses	but	to	test	each	of	them	by	finding	evidence	against
them.

We’re	looking	for	information	which	falsifies	one	of	our	hypotheses.	Reality	may	not	be	so
cooperative.	The	next	best	thing	is	information	which	prefers	one	hypothesis	to	another:	not
falsifying	evidence	but	differential	evidence.	We	might	also	find	that	a	combination	of
hypotheses	fits	best:	The	NYPD	might	be	intentionally	stopping	Muslims	on	the	street	and
mosques	might	be	in	more	densely	populated	areas.	That	itself	is	a	new	hypothesis.

The	method	of	competing	hypotheses	need	not	involve	data	at	all.	You	can	apply	the	idea	of
ruling	out	hypotheses	to	any	type	of	reporting	work,	using	any	combination	of	data	and	non-
data	sources.	The	concept	of	triangulation	in	the	social	sciences	captures	the	idea	that	a
true	hypothesis	should	be	supported	by	many	different	kinds	of	evidence,	including
qualitative	evidence	and	theoretical	arguments.	That	too	is	a	classic	idea.	Here’s	Peirce
again:
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Philosophy	ought	to	imitate	the	successful	sciences	in	its	methods,	so	far	as	to	proceed
only	from	tangible	premises	which	can	be	subjected	to	careful	scrutiny,	and	to	trust
rather	to	the	multitude	and	variety	of	its	arguments	than	to	the	conclusiveness	of	any
one.	Its	reasoning	should	not	form	a	chain	which	is	no	stronger	than	its	weakest	link,	>
but	a	cable	whose	fibers	may	be	ever	so	slender,	provided	they	are	sufficiently
numerous	and	intimately	connected.

What	you	see	in	the	data	cannot	contradict	what	you	see	in	the	street,	so	you	always	need
to	look	in	the	street.	The	conclusions	from	your	data	work	should	be	supported	by	non-data
work,	just	as	you	would	not	want	to	rely	on	a	single	source	in	any	journalism	work.

The	story	you	run	is	the	story	that	survives	your	best	attempts	to	discredit	it.
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Communication
The	mark	of	a	civilized	human	is	the	ability	to	look	at	a	column	of	numbers,	and	weep.	-
attributed	to	Bertrand	Russell

Quantification	produces	data	and	analysis	brings	meaning	to	it.	But	it	doesn’t	count	as
journalism	unless	you	can	communicate	what	you’ve	learned.	This	need	shapes	the	story	all
the	way	through,	including	quantification	and	analysis.

In	journalism	we	usually	need	to	assume	that	the	audience	has	little	familiarity	with	either	the
subject	of	the	story	or	quantitative	concepts	in	general,	which	makes	this	particularly	difficult.
And	after	reading,	the	reader 	must	eventually	do	something	with	the	information,	or	our
journalism	has	no	effect.	This	ties	journalism	to	prediction.

Most	people	are	not	used	to	interpreting	data,	and	it’s	hard	to	blame	them.	Data	visualization
can	be	helpful	because	it	transfers	some	of	the	cognitive	work	of	understanding	data	to	the
enormously	powerful	human	visual	system.	Still,	the	foundational	concepts	of	data	work	are
subtle	and	at	times	unnatural.	The	nuances	of	sampling,	probabilities,	causality,	and	so	on
are	foreign	to	everyday	experience.	More	than	that,	numbers	are	not	a	particularly
empathetic	medium.	For	most	people	even	the	most	screaming	statistic	is	disconnected
from	everyday	experience.	Journalists	can	overcome	this	using	examples,	metaphors,	or
stories	to	relate	the	numbers	to	people.	Journalism	is	a	deeply	human	task,	no	matter	the
methods.

Ultimately,	a	journalist	is	responsible	for	the	ideas	that	end	up	in	their	reader’s	head.	There
are	two	parts	to	this:	ensuring	that	the	data	and	the	story	clearly	and	accurately	represents
the	reality,	and	ensuring	that	this	accurate	representation	is	what	the	reader	actually	comes
away	with.
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Perception
Quick,	which	of	these	shapes	is	different?

Well	that	was	easy.	How	about	now?

Now	try	this	one.	Which	shape	is	different	from	all	others	here?
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The	first	two	were	easy,	but	that	one	was	slightly	harder,	right?	These	examples	illustrate	a
visual	ability	called	the	pop-out	effect,	which	lets	you	find	something	in	a	sea	of	similar
objects	without	having	to	think	about	it.	The	object	that	is	different	just	“pops	out”	at	you.
Except	that	sometimes	it	works	better	than	others.	You	probably	took	a	few	seconds	longer
to	find	the	single	vertical	light	bar	in	the	last	image.

Pop-out	sometimes	works	and	sometimes	doesn’t	because	you	have	“hardware”	in	your
visual	system	that	can	perform	complex	processing	tasks	below	the	level	of	your
consciousness.	Under	the	right	circumstances,	color,	orientation,	shape,	texture,	motion,
depth,	flicker,	and	many	other	visual	attributes	can	cause	pop-out.	But	if	the	problem	gets
too	complex	for	your	highly	specialized	visual	hardware,	you	have	no	choice	but	to	do	a
“visual	search”	by	scanning	each	object,	like	a	Where’s	Waldo	book.

Your	visual	system	can	do	all	sorts	of	other	neat	tricks,	like	comparisons.
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You	don’t	have	to	think	to	know	which	object	is	largest,	or	tilted	down	the	most,	or	whether
the	circles	are	different	colors.	This	is	the	basis	of	all	data	visualization:	We	are	relying	on
very	rapid,	unconscious	abilities	of	the	human	visual	system	to	communicate	data	quickly.
With	a	well-designed	visualization,	you	don’t	need	to	think	about	it	to	see	a	trend	or	a	cluster.

Data	visualization	researchers	have	identified	many	important	features	of	the	human	eyes
and	brain. 	There	are	different	visual	“channels”	we	might	use	to	encode	data,	such	as
position,	size,	color,	orientation,	shape,	texture,	motion,	depth,	and	a	dozen	more,	and	from
experiments	we	know	the	effectiveness	of	these	channels	for	different	types	of
representation.	For	example,	we	know	that	position	is	the	fastest	and	most	accurate	visual
channel	for	comparing	quantities,	while	color	works	great	for	categorical	data	but	poorly	for
continuous	variables.	We’ve	measured	how	perceived	contrast	changes	depending	on
context,	and	explored	how	noise	and	clutter	can	slow	down	visual	tasks.	And	we’ve	teased
out	how	pictures	save	on	short-term	memory.	With	a	picture	in	front	of	you,	you	don’t	need	to
store	the	relationships	between	elements	in	your	working	memory,	because	you	can	just
look	and	see.	This	frees	up	your	thinking	for	more	sophisticated	thoughts	about	the	content.

Our	visual	processing	system	is	so	fast	and	sophisticated	that	maybe	we	shouldn’t	think
about	it	as	cognition	at	all.	Instead,	it’s	perception.	It	feels	like	you	“just	see”	the	important
features	of	the	visualization.	But	of	course	we	don’t	“just	see.”	Experimenters	have	mapped
out	exactly	what	we	do	and	don’t	see,	and	you	can	train	your	eye	over	time,	too—like	when
you	learned	to	recognize	letters	and	then	words.

Considering	our	visual	abilities	leads	to	important	design	choices.	Our	unconscious	ability	to
compare	lengths	is	why	you	should	generally	start	the	Y	axis	at	zero.	Otherwise,	the	relative
lengths	won’t	correspond	to	the	relative	values,	and	we’ll	perceive	incorrect	relationships.
Ignoring	visual	perception	when	creating	data	visualizations	is	like	ignoring	the	consensus
meanings	of	words	when	writing.
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But	it’s	not	just	vision	we	need	to	understand.	We	can’t	possibly	study	the	communication	of
data	without	studying	the	human	perception	of	quantities.	How	our	story	is	perceived
depends	on	everything	from	vision	to	cognition	to	what	the	audience	already	believes.
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Representation
Most	of	what	we	know	comes	through	some	form	of	media,	some	form	of	secondhand
representation.	A	great	deal	has	been	said	on	who	and	what	gets	represented	in	journalism,
and	how	certain	people	and	ideas	are	presented.	Adding	data	does	not	change	the	basic
nature	of	these	issues,	but	data	is	a	different	kind	of	information	that	lends	itself	to	different
kinds	of	communication.

I	tend	to	think	of	information	as	coming	in	two	different	flavors:	examples	and	statistics.	The
story	of	someone	looking	for	a	job	is	an	example,	while	the	unemployment	rate	is	a	statistic.
People	also	talk	about	anecdotes	versus	data,	or	case	studies	versus	surveys,	or	narratives
versus	numbers,	or	maybe	qualitative	and	quantitative.	Not	all	of	these	pairs	are	talking
about	quite	the	same	thing,	but	they	all	capture	some	kind	of	difference.	I	don’t	think	these
modes	of	information	are	in	opposition,	or	even	that	the	boundary	is	really	all	that	clear.
(What	would	you	call	the	ethnographies	of	a	randomly	sampled	set	of	people?)	But	I	do	see
two	very	general	patterns	in	the	way	information	can	be	collected.

You	can	collect	a	small	amount	of	specific	information	from	many	people	and	summarize	it
with	statistics.	Or	you	can	collect	rich,	open-ended	information	from	just	a	few	people	and
present	each	as	an	in-depth	example.	In	this	sense	statistics	and	examples	are
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complementary	forms,	and	both	can	be	used	to	represent	a	broader	group	of	people.	That
is,	both	can	be	used	to	infer	information	we	did	not	collect—additional	details	about	the	lives
of	more	people.	All	representation	is	generalization.

Consider	unemployment	again.	A	survey	asks	a	few	questions	of	many	people,	so	that	we
can	count	how	many	people	are	unemployed.	We	can	also	find	patterns	of	connection
between	employment	status	and	location,	education,	age,	and	so	on.	To	see	these	patterns
truly,	without	bias,	we	must	either	count	every	single	person	or	take	a	random	sample.	That
is,	a	random	sample	is	a	representative	sample.	But	we	also	need	to	understand	the	lives	of
individual	people,	or	we	cannot	ever	understand	how	these	societal	forces	play	out	in
practice.	Maybe	we	know	that	people	of	a	certain	race	have	higher	unemployment,	but	how
does	this	actually	happen?	What	goes	on	in	such	a	person’s	life	when	they	are	looking	for	a
job?	What	did	they	hear	in	their	last	interview?	The	unemployment	rate	cannot	answer	these
sorts	of	questions,	but	the	stories	of	individual	people	can.

In	the	best	case,	a	story	combines	numbers	and	narratives.	The	data	represents	many
people	in	a	narrow	but	meaningful	way,	while	stories	relate	the	deep	experiences	of	only	a
few,	and	these	different	types	of	information	together	describe	a	unified	reality.	But	this	is
only	what’s	on	the	page.
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Examples	Trump	Statistics
Taking	responsibility	for	the	impression	that	the	reader	comes	away	with	requires	an
understanding	of	how	people	integrate	different	types	of	information.	And	generally,
examples	are	much	more	persuasive	than	statistics—even	when	they	shouldn’t	be.

The	United	States	has	seen	a	two-decade-long	decline	in	violent	crime	rates.	This	holds
across	every	type	of	violent	crime	and	in	every	place.

Over	the	same	period	of	time,	there	has	a	been	a	very	widespread	perception	that	crime	is
getting	worse.58
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The	number	of	people	who	believe	that	crime	is	worse	this	year	than	last	has	hovered
around	60–80	percent	for	decades,	even	as	the	number	of	people	who	have	been	the	victim
of	a	violent	crime	has	fallen	by	a	factor	of	three.	Gallup	goes	so	far	as	to	say	“perceptions	of
crime	are	still	detached	from	reality	…federal	crime	statistics	have	not	been	highly	relevant
to	the	public’s	crime	perceptions	in	recent	years.”

How	can	this	be?	There	is	a	wealth	of	data	on	crime	in	the	United	States,	most	of	it	freely
available,	and	crime	rate	figures	have	been	repeated	endlessly	in	news	stories.	Surely	this	is
an	easily	correctable	misperception.	(And	it’s	definitely	a	misperception.	Although	there	are
all	sorts	of	issues	in	counting	crime,	violent	crime	rates	are	thought	to	be	the	most	accurate
type	of	crime	data	because	the	seriousness	of	incidents	like	homicide	makes	them	harder	to
hide	and	easier	to	count.)

I	don’t	know	for	certain	why	perception	is	so	far	from	reality	in	this	case—I	don’t	think
anyone	really	does—but	the	pattern	fits	what	we’ve	seen	in	experiments.

It	was	not	until	the	1970s	that	researchers	investigated	the	human	perception	of	statistical
information	in	a	serious	way.	Near	the	end	of	that	decade,	Hamill,	Wilson,	and	Nisbett	asked
a	simple	question:	How	does	statistical	information	change	the	perception	of	an	anecdote?

These	researchers	wanted	to	see	if	people	would	discount	an	extreme	example	when	they
were	given	statistics	that	showed	it	to	be	extreme.	So	they	showed	over	a	hundred	people	a
New	Yorker	article	about	a	welfare	recipient:
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The	article	provided	a	detailed	description	of	the	history	and	current	life	situation	of	a
43-year-old,	obese,	friendly,	irresponsible,	>	ne’er-do-well	woman	who	had	lived	in	New
York	City	for	16	years,	the	last	13	of	which	had	been	spent	on	welfare.	The	woman	had
emigrated	from	Puerto	Rico	after	a	brief,	unhappy	teenage	marriage	that	produced
three	children.	Her	life	in	New	York	was	an	endless	succession	of	common-law
husbands,	children	at	roughly	18-month	intervals,	and	dependence	on	welfare.	She	and
her	family	lived	from	day	to	day,	>	eating	high-priced	cuts	of	meat	and	playing	the
numbers	on	the	days	immediately	after	the	welfare	check	arrived,	and	eating	beans	and
borrowing	money	on	the	days	preceding	its	arrival.	Her	dwelling	was	a	decaying,
malodorous	apartment	overrun	with	cockroaches	…

This	was	a	real	person,	but	she	was	not	a	typical	case,	because	almost	no	one	stays	on
welfare	for	13	years.	One	group	of	readers	also	saw	statistical	information	showing	this	was
so:

Statistics	from	the	New	York	State	Department	of	Welfare	show	that	the	average	length
of	time	on	welfare	for	recipients	between	the	ages	of	40	and	55	is	2	years.	Furthermore,
90	percent	of	these	people	are	off	the	welfare	rolls	by	the	end	of	4	years.

The	other	group	of	readers	was	given	false	statistical	information	that	made	13	years	seem
like	a	normal	length	of	time:

Statistics	from	the	New	York	State	Department	of	Welfare	show	that	the	average	length
of	time	on	welfare	for	recipients	between	the	ages	of	40	and	55	is	15	years.
Furthermore,	90	percent	of	these	people	are	off	the	welfare	rolls	by	the	end	of	8
years.

Then	everyone	was	given	a	brief	quiz	with	questions	about	their	perception	of	welfare
recipients	such	as:

How	hard	do	people	on	welfare	work	to	improve	their	situations?	(1	=	>	not	at	all	hard,	5
=	extremely	hard)

As	you	might	expect,	most	people	came	away	from	all	of	this	with	a	rather	negative
impression	of	people	on	welfare—much	more	negative	than	a	control	group	who	did	not
read	the	story.	But	there	was	no	meaningful	difference	in	the	opinions	of	those	who	read	the
real	versus	fake	statistics,	and	no	difference	when	the	statistics	were	presented	before
versus	after	the	story.

The	description	of	the	woman	in	her	shabby	apartment	is	so	vivid,	so	real,	so	easy	to
connect	to	our	own	experiences	and	cultural	stereotypes.	It	completely	overwhelms	the	data.
it’s	not	that	people	didn’t	remember	the	average	length	of	time	someone	stays	on	welfare;
they	were	quizzed	on	that,	too.	The	statistical	information	simply	didn’t	figure	into	the	way
they	formed	their	impressions.
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I	certainly	don’t	blame	readers	for	this;	it’s	never	worthwhile	to	blame	your	readers.	Nor	am	I
convinced	I	would	be	any	different.	I	don’t	think	it’s	clear	enough	that	this	woman	was
atypical,	vivid	examples	are	persuasive,	and	readers	had	no	reason	to	be	especially	careful.
Rather	than	shaking	my	faith	in	the	intelligence	of	humanity,	I	just	see	this	as	a	lesson	in
how	to	communicate	better.

There	have	been	other	experiments	in	a	similar	vein,	and	they	usually	show	that	examples
trump	statistics	when	it	comes	to	communication.	In	one	study	people	were	asked	to
imagine	they	were	living	with	chest	pain	from	angina	and	had	to	choose	between	two
possible	cures.	They	were	told	that	the	cure	rate	for	balloon	angioplasty	was	50	percent	and
the	cure	rate	for	bypass	surgery	was	75	percent.	They	also	read	stories	about	people	who
underwent	different	surgeries.	In	some	cases	the	surgery	succeeded	in	curing	their	angina
and	in	some	it	failed,	but	these	examples	contained	no	information	that	would	be	of	use	in
choosing	between	the	surgeries.	Even	so,	people	chose	bypass	surgery	twice	as	often	when
the	anecdotes	favored	it,	completely	ignoring	the	stated	odds	of	a	cure.

Which	brings	us	back	to	crime	reporting.	In	major	cities,	not	every	murder	makes	the	news.
In	different	times	and	places	the	number	of	reported	murders	has	varied	between	30	percent
and	70	percent	of	the	total. 	The	crimes	that	get	reported	are	always	the	most	serious.
Content	analysis	has	shown	that	coverage	is	biased	toward	victims	who	are	young,	female,
white,	and	famous,	as	well	as	crimes	which	are	particularly	gruesome	or	sexual.	Yet	these
examples	are	the	stuff	from	which	our	perceptions	are	formed.	it’s	enough	to	make	a	media
researcher	weep:

Collectively,	the	findings	indicate	that	news	reporting	follows	the	law	of	opposites—the
characteristics	of	crimes,	criminals,	and	victims	represented	in	the	media	are	in	most
respects	the	polar	opposite	of	the	pattern	suggested	by	official	crime	statistics.

Not	only	is	crime	reporting	biased	in	a	statistical	sense,	but	the	psychological	dominance	of
examples	means	that	readers	end	up	believing	almost	the	opposite	of	the	truth.	This	is	a
type	of	media	bias	that	is	seldom	discussed	or	criticized.

If	you	want	the	reader	to	walk	away	with	a	fair	and	representative	idea	of	what	the	data
means	out	in	the	world,	then	your	examples	should	be	average.	They	should	be	typical.	This
goes	up	against	journalism’s	fascination	with	outliers.	It’s	said	that	“man	bites	dog”	is	news,
but	“dog	bites	man”	is	not.	But	if	we	want	to	communicate	what	the	bite	data	says	we	should
consider	going	with	“dog	bites	man”	for	our	illustrative	examples.

My	favorite	stories	draw	on	both	statistics	and	examples,	using	complementary	types	of
information	to	build	up	a	full	and	convincing	picture.	But	generally,	examples	are	more
persuasive	than	statistics	presented	as	numbers.	Individual	cases	are	much	more	relatable,
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detailed,	and	vivid,	and	they	will	shape	perception.	The	bad	news	is	that	poorly	chosen
examples	can	create	or	reinforce	bad	stereotypes.	But	this	also	means	that	well-chosen
examples	bring	clarity,	accuracy,	and	life	to	a	story,	as	every	storyteller	knows.
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Who	Is	in	the	Data?
Data	about	people	affects	people’s	lives.	Urban	planners,	entrepreneurs,	social	critics,	police
—all	kinds	of	people	use	data-based	representations	of	society	in	their	work.	This	is	why	the
issue	of	representation	is	so	important.	Changing	how	someone	is	perceived,	or	if	they	are
perceived	at	all,	can	have	enormous	effects.

The	“goodness”	of	a	representation	depends	on	what	you	want	to	do	with	it—the	story	you
are	telling—but	in	many	cases	it	seems	most	fair	to	count	each	person	equally.	There	is	a
nice	alignment	here	between	democracy	and	statistics,	because	the	simplest	way	to
generate	data	is	to	count	each	item	in	exactly	the	same	way.	Random	samples	are	also	very
popular,	but	they	are	just	a	practical	method	to	approximate	this	ideal.	This	moral-
mathematical	argument	on	the	representativeness	of	data	is	almost	never	spelled	out,	but
it’s	so	deep	in	the	way	we	think	about	data	that	we	usually	just	say	data	is	“representative”	of
some	group	of	people	when	it	approximates	a	simple	count.

The	data	you	have	may	deviate	from	this	ideal	in	important	ways.

Journalists	have	been	trying	to	portray	the	public	to	itself	for	a	long	time.	When	you	read	an
article	about	student	debt	that	quotes	a	few	students,	these	students	are	standing	in	for	all
students.	Broadcast	journalism’s	“person	on	the	street”	interview	brings	the	reader	into	the
story	by	presenting	the	opinions	of	people	who	are	“just	like	them.”	Of	course,	it	never	really
works	out	that	way;	reporters	only	interview	a	small	number	of	not-really-random	people,
and	television	crews	tend	to	film	whomever	is	easiest	to	get	on	camera.

When	Osama	bin	Laden	was	killed	in	2011,	the	Associated	Press	undertook	a	project	to
gather	reactions	from	all	over	the	world.	Reporters	rushed	to	pick	up	any	camera	they	had
and	ask	the	same	scripted	question	of	many	people.	But	which	people?	In	practice	it	will
depend	on	factors	like	which	reporters	are	most	keen	on	the	project,	who	the	reporters
already	know,	who	is	easiest	to	get	to,	and	who	is	most	likely	to	speak	a	language	the
reporter	understands.	The	project	was	meant	to	capture	the	global	response	to	a	historic
event,	but	it’s	not	clear	whose	voices	are	actually	represented.	A	global,	random	video
sample	on	a	breaking	news	deadline	would	be	quite	a	challenge,	but	perhaps	you	could	try
to	get	a	certain	range	of	country,	age,	race,	gender,	and	so	on.

Social	media	seems	to	offer	a	way	out,	because	it	represents	so	many	more	people.	No
doubt	bulk	social	media	analysis	can	be	a	huge	improvement	over	a	handful	of	awkwardly
chosen	sources.	But	social	media	isn’t	really	representative	either,	not	in	the	sense	that	a
random	sample	is.

Here’s	New	York	City,	as	revealed	by	geocoded	tweets:68
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I	find	this	map	beautiful	and	revealing.	it’s	not	a	map	of	geography	or	political	boundaries,
but	a	map	of	people.	I	love	how	it	traces	major	transit	routes,	for	example.	But	it	is	only	a
map	of	certain	types	of	people,	as	I	know	from	comparing	it	to	a	population-density	map.
There	are	large	sparse	areas	in	Brooklyn	where	plenty	of	people	live,	and	Soho	is	definitely
not	as	dense	as	Midtown.	Also,	only	a	few	percent	of	tweets	are	geocoded.	What	sort	of
person	uses	this	feature?

Not	everyone	is	on	Twitter,	not	everyone	is	Tweeting,	and	even	fewer	are	speaking	on	the
topic	of	your	story.	This	data	has	a	bias	toward	certain	types	of	people,	and	you	don’t	really
know	which	kind	of	people	those	are.	There	is	surely	useful	information	to	be	got	from	social
media,	but	it	is	not	the	same	kind	of	information	you	can	get	from	a	random	sample.
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Whether	or	not	this	is	a	problem	depends	on	your	story.	Twitter	users	tend	to	be	affluent	and
urban,	so	if	that’s	the	population	you	want	to	hear	from,	you’re	good.	If	it’s	not,	there	may	not
be	much	to	say	from	a	Twitter	analysis.	Any	representation	of	public	sentiment	created	from
social	media	data—a	word	cloud	or	anything	else—will	be	biased	in	an	unknown	way.	That
is,	the	results	will	be	skewed	relative	to	a	random	sample,	and	the	worst	part	is	you	won’t
know	how	skewed	they	are.

The	way	you	choose	your	data	can	also	create	representativeness	issues.	Here’s	a
visualization	by	Moritz	Stefaner	that	is	meant	to	show	the	“Vizosphere,”	the	people	who
make	up	the	data	visualization	community.

Excerpt	from	the	Vizosphere	by	Stefaner.

Of	course	it’s	not	really	a	visualization	of	everyone	involved	with	visualization.	To	create	this
picture,	Stefaner	started	with	“a	subjective	selection	of	‘seed	accounts,’	”	meaning	the
Twitter	handles	of	18	people	he	knew	to	be	involved	in	visualization.	The	1,645	people
included	in	the	picture	are	all	following	or	followed	by	at	least	five	of	these	accounts.

The	result	is	a	very	interesting	representation	of	some	people	involved	in	visualization	but
certainly	not	everyone	involved	in	visualization.	Why	these	18	accounts?	Why	not	include
people	with	four	links	instead	of	five?	Part	of	the	problem	is	that	there	is	no	universally
accepted	definition	of	who	is	“in”	the	visualization	community,	but	even	if	there	were,	it’s
doubtful	Twitter	network	analysis	would	be	the	way	to	find	them	all.	This	chart	almost
completely	excludes	the	scientific	visualization	community,	hundreds	of	people	who	have
been	doing	visualization	for	decades.
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Stefaner	knows	there	are	issues	of	this	sort,	and	says	so	in	the	description	of	this	image.
There’s	nothing	wrong	with	all	this.	But	if	it	were	to	be	presented	as	journalism,	would
readers	need	to	parse	the	fine	print	to	get	an	accurate	understanding?
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Communicating	Uncertainty
Uncertainty	is	a	recurring	theme	in	data	work.	It’s	familiar	in	a	way,	because	we	have	all
been	unsure.	But	I	don’t	think	most	people	have	a	natural	feel	for	quantitative	measures	of
uncertainty.	I	suspect	the	best	way	to	get	a	feel	for	uncertainty	is	to	play	with	simulations	of
probabilistic	things,	but	your	readers	won’t	have	done	that	so	we	have	to	find	other	ways	of
communicating.

We’ve	encountered	quantified	uncertainty	many	times	already.	The	simplest	way	of
presenting	uncertainty	is	to	give	a	range:	312	±7	miles.	The	margin	of	error	of	a	sample	is	a
more	sophisticated	measure	that	includes	how	often	we	expect	the	error	to	fall	in	that	range:
the	poll	numbers	were	68	percent	in	favor,	accurate	to	within	3	percent	19	times	out	of	20.
Probabilities	are	also	a	kind	of	uncertainty:	we	analyzed	the	stoplight	data	and	found	that	the
odds	were	2	to	1	in	favor	of	the	model	with	a	working	stoplight.

These	sorts	of	numbers	can	be	difficult	to	grasp	on	an	intuitive	level,	yet	the	uncertainty	in	a
result	is	a	key	part	of	that	result.	When	the	data	is	uncertain	or	leads	to	uncertain
conclusions,	it	would	be	a	lie	to	omit	that	uncertainty,	or	communicate	it	poorly.

There	are	many	ways	to	communicate	uncertainty.	We	can	show	it	in	a	visualization	by
indicating	the	range	of	possible	values.

Expected	margin	of	victory	in	2014	elections,	from	fivethirtyeight.com.

This	image	from	the	2014	elections	shows	how	the	margin	of	error	on	the	margin	of	victory
changed	over	time. 	It	clarifies	something	which	is	not	otherwise	obvious:	The	polls
showed	a	consistent	lead	for	months,	yet	it	was	only	late	in	the	race	that	victory	was
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particularly	certain.	All	through	September	the	odds	were	closer	to	60/40,	only	narrowing
substantially	in	the	second	half	of	October.

The	gray	region	is	the	range	of	values	where	the	outcome	is	expected	to	fall	90	percent	of
the	time,	the	90-percent	confidence	interval.	The	easiest	way	to	compute	this	range	is	to
simulate	lots	and	lots	of	elections	using	a	model	that	generates	random	outcomes	according
to	the	known	uncertainty	of	the	polling	data,	then	find	the	5th	and	95th	percentiles	to	cut	off
the	outliers	on	the	bottom	and	top.	The	90	percent	figure	is	arbitrary,	really	just	convention,
but	it	provides	a	reasonable	balance.	If	we	showed	the	entire	100	percent	range	of	the	data,
the	gray	region	would	stretch	to	include	every	fluke	scenario.	If	we	showed	only	the	central
50	percent	then	readers	might	come	away	with	an	overly	narrow	impression	of	the
uncertainty,	because	the	true	result	would	fall	outside	the	gray	area	half	the	time	(assuming
a	properly	calibrated	prediction	model).

We	can	also	show	uncertainty	by	presenting	the	results	of	simulations	with	randomness	built
in.	The	New	York	Times	built	a	roulette	machine	to	explain	the	uncertainties	in	its	2014
election	predictions.	Each	state	is	represented	by	a	wheel	divided	into	colored	segments
according	to	the	then-current	probabilities	that	each	party	would	win	there.	When	the	user
clicks	the	spin	button,	all	wheels	spin	and	stop	and	at	random	positions,	producing	a	final
tally	of	senate	seats.

An	illustration	of	the	uncertainties	in	the	outcome	of	the	2014	Senate	races.	Each	time	the	user	presses	“spin	again”	the
wheels	rotate	and	stop	at	a	random	position.	From	The	New	York	Times. *71
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This	visualization	relies	on	the	same	logic	we	used	to	analyze	the	stoplight	data	in	the	last
chapter—it	uses	many	simulation	runs	to	show	how	the	effects	of	chance	shape	the	data	we
see.	Understanding	how	some	underlying	reality	leads	to	the	observed	data	helps	you	figure
out	what	the	reality	is	when	you	are	trying	to	interpret	the	data.

These	examples	both	involve	numbers	with	some	probabilistic	error.	Sometimes	what	we
need	to	communicate	is	just	a	probability	by	itself.

Humans	have	a	nonlinear	perception	of	numerical	probabilities,	as	they	do	with	many	other
perceptions	(such	as	brightness	which	is	perceived	on	a	logarithmic	scale).	Daniel
Kahneman	and	Amos	Tversky	pioneered	the	measurement	of	probability	perception	in	the
late	1970s	with	an	experiment	that	gave	people	a	choice	between	two	bets	with	given	odds
and	payoffs.	They	showed	that	people	deviate	in	predictable	ways	from	the	best	strategy	of
valuing	a	bet	according	to	its	average	winnings,	which	you	get	by	multiplying	the	probability
of	winning	by	the	payoff.	In	these	experiments,	people	acted	as	if	small	odds	were	much
higher	and	large	odds	were	much	lower. 	That	is,	people	bet	too	much	when	the	odds	of
winning	were	low,	and	too	little	when	the	odds	of	winning	were	high,	even	when	they	knew
the	exact	odds!
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If	this	is	how	humans	deal	with	probability	figures	generally,	then	we	should	expect	people	to
exaggerate	the	probability	of	very	rare	events	(like	plane	crashes)	while	underappreciating
the	probability	of	very	likely	events	(like	heart	disease).

This	is	especially	a	problem	when	communicating	small	probability	figures,	such	as	rare
risks.	The	probability	of	being	struck	by	lightning	in	your	lifetime	is	something	around
0.0001. 	It's	not	immediately	obvious	what	this	means,	but	the	chart	above	suggests	that
readers	will	tend	to	perceive	getting	struck	by	lightning	as	very	much	more	likely	than	it
actually	is.

All	sorts	of	things	affect	the	perception	of	the	probability	of	some	event.	If	the	event	is	very
bad,	we	may	perceive	it	as	more	common. 	We	will	also	imagine	it	to	be	more	common	if
it’s	easy	to	bring	examples	to	mind,	a	cognitive	effect	known	as	the	availability	heuristic.
Thus,	dying	in	a	terrorist	attack	can	seem	just	as	probable	as	being	struck	by	lightning	even
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though	a	conservative	estimate	puts	lighting	at	least	ten	times	more	likely.	Telling	people	the
actual	numbers	does	not	change	this	perception,	because	their	perception	is	not	based	on
numbers!

One	way	to	communicate	a	probability	is	to	talk	about	its	frequency	interpretation,	that	is,	as
a	count	of	some	number	of	things	out	of	some	larger	number.	When	we	say	that	the	lifetime
probability	of	getting	hit	by	lightning	is	0.0001,	we	mean	that	1	in	every	10,000	people	will	be
struck.	This	is	a	much	more	intuitive	way	of	thinking	about	probabilities	for	most	people.	It
may	be	more	likely	to	lead	to	correct	reasoning	when	diagnosing	a	disease	or	making	other
sorts	of	inferences	from	uncertain	evidence. 	Frequencies	work	particularly	well	if	you	can
compare	the	denominator	to	familiar	units	of	population.	Let’s	say	there	are	10,000	people	is
a	small	town;	in	a	city	of	a	million	people,	100	will	be	struck	by	lightning.	10,000	is	likely
much	more	than	the	number	of	people	you	will	know	in	in	your	lifetime,	meaning	that	you
probably	won’t	know	anyone	who	has	been	or	will	be	struck	by	lightning.

Comparisons	are	another	useful	way	to	communicate	probability.	The	probability	of	getting
hit	by	lightning	is	0.0001,	but	the	probability	of	dying	in	a	car	crash	is	0.002,	which	is	20
times	more	likely.	Again,	thinking	in	terms	of	people	helps:	Out	of	10,000	people,	one	will	get
hit	by	lightning,	but	20	will	die	in	a	car	crash.	Get	your	measurements	in	units	of	people
whenever	possible—it’s	a	unit	that	everyone	understands.	This	works	particularly	well	as	a
visualization	with	little	people	icons:

Hit	by	lightning	☺

Dies	in	crash	☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺☺

The	ratio	of	the	odds	of	something	happening	in	one	case	as	opposed	to	another	is	called
odds	ratio,	and	it’s	a	standard	figure	used	to	compare	two	groups.	Here	the	odds	ratio	of	car
crash	versus	lightning	is	(20/9980)	/	(1/9999)	≈	20.	Often	two	groups	are	thought	to	have
different	risks	or	chances	of	something,	like	the	probability	of	heart	disease	for	those	who	do
and	do	not	exercise,	or	the	probability	of	getting	into	college	for	those	who	went	to	different
high	schools.

An	odds	ratio	clearly	communicates	the	relation	between	two	odds,	but	it	obscures	the
overall	magnitude	of	each.	Sure,	banning	a	toxic	chemical	can	reduce	the	odds	of	a	certain
type	of	cancer	by	2,	but	if	only	two	people	are	expected	to	get	that	cancer	then	it’s	not	a	very
significant	public	health	intervention.	Whereas	a	tiny	improvement	in	the	odds	of	getting	lung
cancer	might	save	thousands	of	lives.

It	is	possible	to	communicate	both	absolute	and	relative	odds	at	the	same	time.	Here’s
smoking	versus	mortality	again,	this	time	by	age:
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Smokers	versus	non-smokers	survival	curves,	from	stubbornmule.net.

Everything	you	need	to	know	is	there,	but	it’s	a	little	hard	to	interpret.	Let’s	see	…60	percent
of	non-smokers	will	live	to	80	versus	25	percent	of	smokers.	Figuring	out	what	this	data
means	requires	far	too	much	messing	around	with	the	chart	and	thinking	through	figures.
Compare	to	the	visualization:
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Smokers	versus	non-smokers	survival	curves,	from	stubbornmule.net.

This	visualization	uses	all	the	principles	we’ve	discussed.	It	represents	probabilities	as
people,	and	compares	probabilities	both	between	smokers	and	non-smokers	and	between
different	ages.	No	one	can	know	whether	they	will	die	from	smoking,	but	visualizations	like
this	can	make	the	uncertainties	personal.

There	are	lots	of	quantitative	communication	tricks	and	techniques	you	can	pick	up,	and	the
visualizations	here	are	not	the	last	word	in	design.	But	the	most	important	principle	of
communicating	uncertainty	is	this:	Communicate	it.	Don’t	let	someone	come	away	from	your
story	with	a	warped	sense	of	the	risk,	or	too	certain	about	something	subtle.	This	is	just
basic	respect	for	the	reader	and	for	the	difficulties	of	knowing.
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Prediction
Prediction	is	important	because	action	is	important.	What	use	is	journalism	that	doesn’t	help
you	decide	what	to	do?	This	requires	knowledge	of	futures	and	consequences.	Prediction
also	has	close	links	to	truth.	Falsification	is	one	of	the	strongest	truth-finding	methods,	and
it’s	prediction	that	allows	us	to	compare	our	ideas	with	the	world	to	see	if	they	hold	up.
Prediction	is	at	the	core	of	hypothesis	testing,	and	therefore	at	the	core	of	science.

Journalists	think	about	the	future	constantly,	and	sometimes	publish	their	predictions:	A
particular	candidate	will	win	the	election;	the	president	will	veto	the	bill	if	it’s	not	revised;	this
war	will	last	at	least	five	years.	It	may	be	even	more	common	to	let	sources	make
predictions:	The	analyst	says	that	housing	prices	will	continue	to	increase;	a	new	study	says
this	many	people	will	be	forced	to	move	as	the	seas	rise.	Leaning	on	experts	doesn’t	excuse
the	journalist	from	disseminating	bad	predictions	unchallenged,	and	it	turns	out	that	experts
quite	often	make	bad	predictions.

The	landmark	work	here	is	Philip	Tetlock’s	Expert	Political	Judgment. 	Starting	in	1984,
Tetlock	and	his	colleagues	solicited	82,361	predictions	from	285	people	whose	profession
included	“commenting	or	offering	advice	on	political	and	economic	trends.”	He	asked	very
concrete	questions	that	could	be	scored	yes	or	no,	questions	like:	“Will	Gorbachev	be
ousted	in	a	coup?”	or	“Will	Quebec	secede	from	Canada?”

The	experts’	accuracy,	over	20	years	of	predictions	and	across	many	different	topics,	was
consistently	no	better	than	guessing.	As	Tetlock	put	it,	a	“dart-throwing	chimp”	would	do	just
as	well.	Our	political,	financial,	and	economic	experts	are,	almost	always,	just	making	it	up
when	it	comes	to	the	future.

I	suspect	this	is	disappointing	to	a	lot	of	people.	Perhaps	you	find	yourself	immediately
looking	for	explanations	or	rationalizations.	Maybe	Tetlock	didn’t	ask	the	true	experts,	or	the
questions	were	too	hard.	Unfortunately	the	methodology	seems	solid,	and	there’s	certainly	a
lot	of	data	to	support	it.	The	conclusion	seems	inescapable:	We	are	all	terrible	at	predicting
our	social	and	political	future,	and	no	amount	of	education	or	experience	helps.

What	does	help	is	keeping	track	of	your	predictions.	This	is	perhaps	Tetlock’s	greatest
contribution.

Although	there	is	nothing	odd	about	experts	playing	prominent	roles	in	debates,	it	is
odd	to	keep	score,	to	track	expert	performance	against	explicit	benchmarks	of	accuracy
and	rigor.
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The	simplest	way	to	do	this	is	just	to	write	down	each	prediction	you	make	and,	when	the
time	comes,	tally	it	as	right	or	wrong.	At	the	very	least	this	will	force	you	to	be	clear.	Like	a
bet,	the	terms	must	be	unambiguous	from	the	outset.

A	more	sophisticated	analysis	takes	into	account	both	what	you	predict	and	how	certain	you
think	the	outcome	is.	Out	of	all	the	predictions	that	you	said	were	70	percent	certain,	about
70	percent	should	come	to	pass.	If	you	track	both	your	predictions	and	your	confidence,	you
can	eventually	produce	a	chart	comparing	your	confidence	to	the	reality.	As	Tetlock	put	it,
“Observers	are	perfectly	calibrated	when	there	is	precise	correspondence	between
subjective	and	objective	probabilities.”

From	Tetlock.

Subjective	probability	is	how	confident	someone	said	they	were	in	their	prediction,	while	the
objective	frequency	is	how	often	the	predictions	at	that	confidence	level	actually	came	true.
In	this	data,	when	the	experts	gave	something	a	60	percent	chance	of	occurring,	their
predictions	came	to	pass	40	percent	of	the	time.	Overall,	this	chart	shows	the	same	general
pattern	found	in	other	studies	of	probability	perception:	Rare	events	are	perceived	as	much
too	likely,	while	common	events	are	thought	to	be	unduly	rare.	It	also	shows	that	expert
knowledge	helps,	but	only	to	a	point.	“Dilettantes”	with	only	a	casual	interest	in	the	topic	did
just	as	well	as	experts,	and	students	who	were	given	only	three	paragraphs	of	information
were	only	slightly	worse.

79

Prediction

108



The	overall	lesson	here	is	not	that	people	are	stupid,	but	that	predicting	the	future	is	very
hard	and	we	tend	to	be	overconfident.	Another	key	line	of	research	shows	that	statistical
models	are	one	of	the	best	ways	to	improve	our	predictions.

In	1954	a	clinical	psychologist	named	Paul	Meehl	published	a	slim	book	titled	Clinical
Versus	Statistical	Prediction. 	His	topic	was	the	prediction	of	human	behavior:	questions
such	as	“what	grades	will	this	student	get?”	or	“will	this	employee	quit?”	or	“how	long	will	this
patient	be	in	the	hospital?”	These	sorts	of	questions	have	great	practical	significance;	it	is	on
the	basis	of	such	predictions	that	criminals	are	released	on	parole	and	scholarships	are
awarded	to	promising	students.

Meehl	pointed	out	that	there	were	only	two	ways	of	combining	information	to	make	a
prediction:	human	judgment	or	statistical	models.	Of	course,	it	takes	judgment	to	build	a
statistical	model,	and	you	can	also	turn	human	judgment	into	a	number	by	asking	questions
such	as	“on	a	scale	of	1–5,	how	seriously	does	this	person	take	their	homework?”	But	there
must	be	some	final	method	by	which	all	available	information	is	synthesized	into	a
prediction,	and	that	will	either	be	done	by	a	human	or	a	mechanical	process.

It	turns	out	that	simple	statistical	methods	are	almost	always	better	than	humans	at
combining	information	to	predict	behavior.

Sixty	years	ago,	Meehl	examined	19	studies	comparing	clinical	and	statistical	prediction,	and
only	one	favored	the	trained	psychologist	over	simple	actuarial	calculations. 	This	is	even
more	impressive	when	you	consider	that	the	humans	had	access	to	all	sorts	of	information
not	available	to	the	statistical	models,	including	in-depth	interviews.	Since	then	the	evidence
has	only	mounted	in	favor	of	statistics.	More	recently,	a	review	of	136	studies	comparing	the
two	methods	showed	that	statistical	prediction	was	as	good	or	better	then	clinical	prediction
about	90	percent	of	the	time,	and	quite	a	lot	better	about	40	percent	of	the	time.	This	holds
across	many	different	types	of	predictions	including	medicine,	business,	and	criminal
justice.

This	doesn’t	mean	that	statistical	models	do	particularly	well,	just	better	than	humans.	Some
things	are	very	hard	to	predict,	maybe	most	things,	and	simply	guessing	based	on	the
overall	odds	can	be	as	good	(or	as	bad)	as	a	thorough	analysis	of	the	current	case.	But	to
do	this	you	have	to	know	the	odds,	and	humans	aren’t	particularly	good	at	intuitively
collecting	and	using	frequency	information.

In	fact	the	statistical	models	in	question	are	usually	simple	formulas,	nothing	more	than
multiplying	each	input	variable	by	some	weight	indicating	its	importance,	then	adding	all
variables	together.	In	one	study,	college	grades	were	predicted	by	just	such	a	weighted	sum
of	the	student’s	high	school	grade	percentile	and	their	SAT	score.	The	weights	were
computed	by	regression	from	the	last	few	years	of	data,	which	makes	this	a	straightforward
extrapolation	from	the	past	to	the	future.	Yet	this	formula	did	as	well	as	professional
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evaluators	who	had	access	to	all	the	admission	materials	and	conducted	personal	interviews
with	each	student.	The	two	prediction	methods	failed	in	different	ways,	and	those	differences
could	matter,	but	they	had	similarly	mediocre	average	performance.

The	idea	that	simplistic	mechanical	predictors	match	or	beat	expert	human	judgment	has
offended	many	people,	and	it’s	still	not	taken	as	seriously	as	perhaps	it	should	be.	But	why
should	this	be	offensive?	Meehl	explained	the	result	this	way:

Surely	we	all	know	that	the	human	brain	is	poor	at	weighting	and	computing.	When	you
check	out	at	a	supermarket,	you	don’t	eyeball	the	heap	of	purchases	and	say	to	the
clerk,	“Well	it	looks	to	me	as	if	it’s	about	$17.00	worth;	what	do	you	think?”	The	clerk
adds	it	up.

Of	course	the	statistical	models	used	for	prediction	don’t	choose	themselves.	Someone	has
to	imagine	what	factors	might	be	relevant,	and	there	is	a	great	deal	of	expertise	and	work
that	goes	into	designing	and	calibrating	a	statistical	model.	Also,	a	model	can	always	be
surprised.	An	election	prediction	model	will	break	down	in	the	face	of	fraud,	and	an
academic	achievement	model	can’t	know	what	a	death	in	the	student’s	family	will	mean.
Moreover,	there	can	always	be	new	insights	into	the	workings	of	things	that	lead	to	better
models.	But	generally,	a	validated	model	is	more	accurate	than	human	guesses,	even	when
the	human	has	access	to	lot	of	additional	data.

I	think	there	are	three	lessons	for	journalism	in	all	of	this.	First,	prediction	is	really	hard,	and
almost	everyone	who	does	it	is	doing	no	better	than	chance.	Second,	it	pays	to	use	the	best
available	method	of	combining	information,	and	that	method	is	often	simple	statistical
prediction.	Third,	if	you	really	do	care	about	making	correct	predictions,	the	very	best	thing
you	can	do	is	track	your	accuracy.

Yet	most	journalists	think	little	about	accountability	for	their	predictions,	or	the	predictions
they	repeat.	How	many	pundits	throw	out	statements	about	what	Congress	will	or	won’t	do?
How	many	financial	reporters	repeat	analysts’	guesses	without	ever	checking	which	analysts
are	most	often	right?	The	future	is	very	hard	to	know,	but	standards	of	journalistic	accuracy
apply	to	descriptions	of	the	future	at	last	as	much	as	they	apply	to	descriptions	of	the
present,	if	not	more	so.	In	the	case	of	predictions	it’s	especially	important	to	be	clear	about
uncertainty,	about	the	limitations	of	what	can	be	known.

I	believe	that	journalism	should	help	people	to	act,	and	that	requires	taking	prediction
seriously.
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Going	Further
You	are	probably	no	closer	to	finishing	your	next	data	project	after	reading	this	book.

I	am	painfully	aware	that	the	theory	in	this	book	is	somewhat	removed	from	the	daily	work	of
data	journalism.	You’re	going	to	need	practical	skills	like	working	with	spreadsheets,
cleaning	data,	coding	up	visualizations,	and	asking	civil	servants	for	explanations.	I’ve
covered	none	of	this	craft.

Yet	all	of	this	work	is	guided	by	old	and	deep	principles.	Journalists	are	latecomers	to
quantitative	thinking.	That’s	unfortunate,	because	numbers	can	bring	us	closer	to	the	truth.
But	only	sometimes.	Hopefully	you	now	have	a	better	sense	of	the	limitations	of	data,	and
the	ways	we	analyze	and	communicate	data.

There’s	a	lot	more	to	learn.

There	are	an	endless	number	of	technical	concepts	relevant	to	data	work.	I’ve	tried	to	give
an	authentic	taste	of	the	state	of	the	art,	and	Bayesian	statistics	and	cognitive	biases	are	at
the	forefront	of	contemporary	practice	across	many	fields.	Still,	these	presentations	do	not
have	the	depth	and	detail	needed	to	do	real	work;	no	one	is	going	to	learn	to	do	statistical
analysis	from	what	I’ve	written.	Not	exactly.

The	good	news	is	you	don’t	have	to	learn	everything	at	once.	An	education	in	statistics	will
give	you	powerful	fundamentals	that	can	be	used	to	reason	about	subtle	problems,	but	you
won’t	need	to	do	that	every	day.	Also,	that’s	what	collaborators	and	mentors	are	for.	A
journalist’s	primary	responsibility	is	to	the	story,	and	technical	mastery	comes	from	the
experience	of	many	solved	problems.

It’s	not	knowing	everything	that	makes	a	technical	professional,	but	being	willing	to	find	out.
I’ve	used	standard	mathematical	language	in	an	effort	to	help	you	find	more	information;	with
a	search	engine,	knowing	the	true	name	of	something	gives	you	the	ability	to	summon	it	at
will.	So	don’t	be	surprised	when	you	don’t	know	something.	If	you’re	anything	like	me	you’ll
get	the	code	wrong	the	first	time,	even	when	you	do	know	what	you’re	doing.	But	never
doubt	that	there	is	a	logic	underlying	every	equation	and	every	line	of	code.	These	things	are
not	magic;	though	the	symbolic	languages	of	data	can	be	intimidating,	there	is	nothing	occult
here.

My	advice	is	to	look	always	for	the	underlying	sense	of	the	thing,	the	plain-language
explanation.	This	sense	can	be	hard	to	find.	When	you	ask	a	question	like	“why	does	a
survey	have	a	bell-shaped	error	distribution?”	you	will	soon	find	yourself	lost	in	inscrutable
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proofs,	answers	that	seem	to	presuppose	you	already	know,	explanations	that	don’t	really
explain.	This	is	an	unfortunate	comment	on	the	sate	of	our	educational	materials,	but	don’t
lose	hope!	Keep	searching	until	you	find	an	answer	that	makes	sense.

Yet	a	technician	is	not	a	journalist.	What	will	you	be	able	to	do	with	all	of	this	understanding
and	ability?

Like	any	medium,	it	can	take	a	while	to	find	your	voice	in	data	journalism.	Sure,	you	can	do
analysis	and	visualization	and	all	the	rest	of	it—but	what	are	you	saying?	What	questions
are	you	asking?	What	is	it	that	is	so	important,	so	urgent,	that	you	must	command	a
stranger’s	time	to	tell	it	to	them?

I	don’t	know	of	any	way	to	discover	what	you	want	to	say	other	than	saying	it.	Just	write.	And
report	and	code	and	visualize,	but	whatever	else	you	do,	put	your	work	into	the	world.	Then
do	the	next	one.	As	Steve	Jobs	said,	real	artists	ship.

If	you	continue	your	study	of	the	deep	workings	of	data,	you	will	discover	entire	worlds.	You
will	retrace	thousands	of	years	of	inspired	ideas,	re-experiencing	each	little	epiphany	as	your
own.	You	will	gradually	arrive	at	one	of	the	most	exciting	frontiers	of	human	thought,	and	you
will	join	professionals	in	many	other	fields	who	are	transforming	their	work	through	data.
Quantitative	ideas	now	pervade	every	aspect	of	the	functioning	of	society,	from	health	to
finance	to	politics.	It’s	impossible	to	understand	the	modern	world	without	understanding
data.

And	if	you	do	understand	data,	you	will	begin	to	see	stories	that	others	literally	cannot
imagine.	We	need	those	stories	told.	That	is,	perhaps,	the	best	possible	argument	for
learning	more.
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Footnotes
	You	might	as	well	expand	that	to	the	relationship	between	story	and	science.	It’s	a	vexing
question.	See,	for	example,	Gelman	and	Basbøll.

	The	classic	discussion	of	the	human	creation	of	categories	is	Sorting	Things	Out:
Classification	and	Its	Consequences.

	For	a	thorough	discussion	of	race	on	the	census,	see	Snipp.

	For	a	fantastic	list	of	20	reasons	why	quantification	is	difficult	in	psychology,	see	Meehl.

	For	a	really	excellent	exposition	of	the	problems	of	counting	“mass	shooting,”	see	Watt.	

	Nehemiah	11:1.

	For	more	on	these	two	unemployment	surveys	and	the	difference	between	them,	see
U.S.	Bureau	of	Labor	Statistics.	

	Actually	60,000	randomly	chosen	households,	which	is	about	150,000	people.	See	U.S.
Census	Bureau.	

	Similar,	but	not	identical,	because	Bernoulli	initially	considered	sampling	“with
replacement,”	where	each	person	might	be	chosen	more	than	once.	This	is	probably
because	sampling	with	replacement	is	mathematically	simpler,	and	Bernoulli	worked	with
approximate	formulas	that	become	more	accurate	as	the	number	of	samples	increases,
rather	than	the	very	large	numbers	involved	in	calculating	the	number	of	possibilities	directly,
which	require	computers.

	I’m	indebted	to	Mark	Hansen	for	the	phrasing	of	these	two	key	sentences.

	Before	I	get	hate	mail:	Yes,	it	is	wrong	to	say	that	there	is	a	90	percent	chance	that	the
true	value	falls	within	a	90-percent	confidence	interval.	The	contortions	of	frequentist
statistics	require	us	to	say	instead	that	our	method	of	constructing	the	confidence	interval
will	include	the	true	value	for	90	percent	of	the	possible	samples,	but	we	don’t	know	anything
at	all	about	this	particular	sample.	The	distinction	is	subtle	but	real.	It’s	also	usually	irrelevant
for	this	type	of	sampling	margin	of	error	computation,	where	the	confidence	interval	is
numerically	very	close	to	the	Bayesian	credible	interval,	which	actually	does	contain	the	true
value	with	90	percent	probability.	See	e.g.	Vanderplas.

	Whether	or	not	anything	is	“truly”	random	is	a	metaphysical	question.	Perhaps	the
universe	is	fully	deterministic	and	everything	is	fated	in	advance.	Or	perhaps	more	data	or
better	knowledge	would	reveal	subtle	connections.	But	from	a	practical	point	of	view,	we	only
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care	if	these	fluctuations	are	random	to	us.	Randomness,	chance,	noise:	There	is	always
something	in	the	data	which	follows	no	discernable	pattern,	caused	by	factors	we	cannot
explain.	This	doesn’t	mean	that	these	factors	are	unexplainable.	There	may	be	trends	or
patterns	we	aren’t	seeing,	or	additional	data	that	might	be	used	to	explain	what	looks	like
chance.	For	example,	we	might	one	day	discover	that	the	number	of	assaults	is	driven	by
the	weather.	But	until	we	discover	this	relationship,	we	have	no	ability	to	predict	or	explain
the	variations	in	the	assault	rate	so	we	have	little	choice	but	to	treat	them	as	random.

	For	a	fantastic	history	of	these	ideas,	see	Ian	Hacking’s	The	Emergence	of	Probability.

	Although	the	mathematics	turn	out	the	same,	there’s	a	useful	distinction	between
something	which	we	must	treat	as	random	because	we	don’t	know	the	correct	answer
(epistemic	uncertainty)	and	something	which	has	intrinsic	randomness	in	its	future	course
(aleatory	uncertainty).	The	difference	is	important	in	risk	management,	where	our	uncertainty
might	be	reduced	if	we	did	more	research,	or	we	might	be	up	against	fundamental	limits	of
prediction.

	Peirce’s	simple	argument	assumes	complete	statistical	independence	between	the
positions	of	every	stroke	in	a	signature.	That’s	dubious,	because	if	you	move	one	letter	while
signing,	the	rest	of	the	letters	will	probably	have	to	move	too.	A	more	careful	analysis
shows	that	an	exact	signature	match	is	much	more	likely	than	one	in	5 	but	still
phenomenally	unlikely	to	happen	by	chance.

	For	a	baggage-free	introduction	to	applied	Bayesian	stats	I	recommend	McElreath’s
Statistical	Rethinking,	or	his	marvelous	lecture	videos.

	I’m	referencing	the	butterfly	effect,	the	idea	that	the	disturbances	from	a	butterfly	flapping
its	wings	might	eventually	become	a	massive	hurricane.	More	generally,	this	is	the	idea	that
small	perturbations	are	routinely	magnified	into	huge	changes.	The	early	chaos	theorist
Edward	Lorenz	came	up	with	the	butterfly	analogy	while	studying	weather	prediction	in	the
early	1960s.	In	practice,	this	uncertainty	amplification	effect	means	there	will	be	random
variations	in	our	data,	due	to	specific	unrepeatable	circumstances,	that	we	cannot	ever	hope
to	understand.

	This	type	of	independent	events	model	is	also	called	a	Poisson	distribution,	after	the
French	mathematician	Siméon	Denis	Poisson,	who	first	worked	through	the	math	in	the
1830s.	But	the	nice	thing	about	using	a	simulation	of	our	intersection	is	that	it’s	not
necessary	to	know	the	mathematical	formula	for	the	Poission	distribution.	Simply	flipping
independent	coins	gives	the	same	result.	Simulation	is	a	revolutionary	way	to	do	statistics
because	it	so	often	turns	difficult	mathematics	into	easy	code.

	Maybe	both	of	your	hypotheses	are	wrong,	and	something	else	entirely	happened.
Maybe	your	models,	which	are	pieces	of	code,	aren’t	good	representations	of	your
hypotheses,	which	are	ideas	expressed	in	language.	Maybe	your	data	is	the	result	of	both	a
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working	stoplight	and	some	amount	of	luck.	Maybe	the	intersection	was	rebuilt	after	the
second	year	with	wider	lanes	and	a	new	stoplight,	and	it’s	really	the	wider	lanes	that	caused
the	change.	Maybe	the	bureaucracy	that	collects	this	data	changed	the	definition	of
“accident”	to	exclude	smaller	collisions.	Or	maybe	you	added	up	the	numbers	wrong.

	Unemployment	versus	investment	chart	from	Mankiw.

	But	sometimes	it	is	possible	to	tell	which	of	two	variables	is	the	cause	and	which	is	the
effect	just	from	the	data,	by	exploiting	the	fact	that	noise	in	the	cause	shows	up	in	the	effect
but	not	vice	versa.	See	Mooij	et	al.

	Michael	Keller,	private	communication.

	I	found	this	circulating	on	the	Internet,	and	was	unable	to	figure	out	who	made	it.	Much
love	to	the	unknown	creator.

	It	probably	wasn’t	Bertrand	Russell	who	first	said,	“The	mark	of	a	civilized	human	is	the
ability	to	look	at	a	column	of	numbers,	and	weep.”	But	per
http://quoteinvestigator.com/2013/02/20/moved-by-stats/	there	is	a	history	of	quoting	and
misquoting	a	similar	phrase.	The	original	text	is	Russell’s	The	Aims	of	Education:

	>	The	next	stage	in	the	development	of	a	desirable	form	of					sensitiveness	is	sympa

thy.	There	is	a	purely	physical	sympathy:	A					very	young	child	will	cry	because	a	br

other	or	sister	is	crying.					This,	I	suppose,	affords	the	basis	for	the	further	deve

lopments.					The	two	enlargements	that	are	needed	are:	first,	to	feel	sympathy					ev

en	when	the	sufferer	is	not	an	object	of	special	affection;					secondly,	to	feel	it	w

hen	the	suffering	is	merely	known	to	be					occurring,	not	sensibly	present.	The	secon

d	of	these	enlargements					depends	mainly	upon	intelligence.	It	may	only	go	so	far	as

					sympathy	with	suffering	which	is	portrayed	vividly	and	touchingly,					as	in	a	go

od	novel;	it	may,	on	the	other	hand,	go	so	far	as	to					enable	a	man	to	be	moved	emot

ionally	by	statistics.	This	capacity					for	abstract	sympathy	is	as	rare	as	it	is	imp

ortant.	

	Many	others	attribute	the	pithier	quote	to	Russell,	but	the	original					source	for	t

hat	is	nowhere	to	be	found.	I	really	like	the	shorter					quote	no	matter	where	it	ult

imately	came	from;	it’s	a	fine	string	of					words.	

	I’ll	use	reader	as	a	generic	name	for	the	consumer	of	a	story,	with	apologies	to	reporters
working	in	other	formats.

	Totally	fun	to	say.

	Lifetime	odds	of	being	struck	by	lightning	estimated	at	1	in	12,000	by	NOAA,	based	on
2004–2013	averages.
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