
Regular
Expressions
Powerful pattern matching

What is a "regular expression" or "regex"?

Regular expressions provide a way to look for
patterns of characters within text when you
know the pattern you need to find but not
exactly where or how within the text it may
appear.

For example
Consider the text strings:
1. "I love data journalism"
2. "Data j is the best!"
3. "Analyzing data is so much fun."

The word "data" appears in all of them, but in different
places and (slightly) different forms. A "find" search could
locate them, but this wouldn't help you flag spreadsheet
entries that had that term.

How does a regex work?
Regular expressions use a kind of shorthand to represent
the organization and repetition of individual characters or
groups of characters (sometimes called classes of
characters). It then looks at each text string one character
at a time to see if it fits within the rules described by the
regular expression.

Essentially, a regular expression describes a set of rules for
sorting text strings.

Another example
Recall our three strings:
1. "I love data journalism"
2. "Data j is the best!"
3. "Analyzing data is so much fun."

Sometimes "data" is at the beginning, sometimes it's not. In one case, it's
capitalized. A regular expression that would find all these instances of "data"
would be:
.*[Dd]ata.*
But why?

A closer look
.*[Dd]ata.*
Let's break this down.

-> .* The period (.) stands for "any character". The asterisk (*) means "zero or
more times."
-> [Dd] Putting brackets around a set of characters is an "or," i.e. "A capital or
lowercase d."
-> ata After the D or d, you must find exactly the letters ata
-> .* But that can be followed by any character, zero or more times.

A little grammar
* Zero or more times (applies to preceding character)
+ One or more time (applies to preceding character)
^ "Not" (applies to subsequent character)
\ "Escape" (applies to subsequent character)
[] "Or" (applies to bracketed characters or classes)
&& "And" (applies to adjacent characters or classes)
{n} "Exactly 'n' times" (applies to preceding character)

A little vocabulary
. Any character (may or may not match line terminators)
\d A digit: [0-9]
\D A non-digit: [^0-9]
\s A whitespace character: [\t\n\x0B\f\r]
\S A non-whitespace character: [^\s]
\w A word character: [a-zA-Z_0-9]
\W A non-word character: [^\w]

A little additional reading
Regular expressions are a features of almost
all programming languages because they are
fast and powerful. Please read this tutorial
about regular expressions in OpenRefine.

https://github.com/OpenRefine/OpenRefine/wiki/Understanding-Regular-Expressions#grel-supported-regex

