
Feeling conflicted?
Avoiding and resolving conflicts in git and GitHub



What causes conflicts? 
If you make changes to a file on your computer, 
and you (or someone else) makes changes to 
the version of that file that's on GitHub, and 
then you try to either "git pull" or "git push", 
you're going to encounter a conflict.



How to avoid conflicts
Always "git pull" your repo whenever you start 
working on it if:
● You made changes to a file directly on GitHub (like the 

README)
● You or others may have changed files since you last ran 

"git push"



When conflicts happen
If you "git pull" and there's a conflict, git will try 
to merge the files together. When you open up 
the conflicted file, you'll see sections that look 
like this:
<<<<<HEAD
code from GitHub version here
code from local version here 
>>>>>>>>>>> some long number



To fix the conflict
You have to fix the code manually, by converting this:
<<<<<HEAD
code from GitHub version here
code from local version here 
>>>>>>>>>>> some long number
To this:

combined version of code

...by deleting the lines with the <<<<<< and >>>> and any extraneous or 
overlapping code



Once you've fixed the conflict

Run: 

git commit -i filename -m "Commit message 
here."

This will merge the conflicts. Then you can "git push" to 
GitHub again and everything will be up-to-date.



Branching & 
merging
Fail-safe experimentation



The process of branching and merging

master

feature1

You create a branch when you want to experiment or create a new feature. It gives you the 
starting point of your main working set of code, and then you can play around with 
changes. If they work out, you can merge them back into "master", updating your main 
project. Otherwise, you can just delete or abandon them.



The process of branching and merging

master

social

Hmm, maybe I'll 
add social media 
buttons….

Data update CSS 
change

Added Twitter! Added FB!
Merge "master" into 
"social." Check that 
everything still works! 

Merge "social" into 
"master."Continue on 
"master" until next 
experiment!



The 5-step program
1. Switch to a new branch, make & commit changes
2. Switch back to master & pull from GitHub to make sure 

it's all up-to-date
3. Switch to branch and merge master into branch
4. Test to make sure everything still works!!!
5. Switch back to master, merge the branch back into 

master, and then push back up to GitHub


